Abstract:Knowledge Distillation (KD) is a promising approach for unsupervised Anomaly Detection (AD). However, the student network's over-generalization often diminishes the crucial representation differences between teacher and student in anomalous regions, leading to detection failures. To addresses this problem, the widely accepted Reverse Distillation (RD) paradigm designs the asymmetry teacher and student, using an encoder as teacher and a decoder as student. Yet, the design of RD does not ensure that the teacher encoder effectively distinguishes between normal and abnormal features or that the student decoder generates anomaly-free features. Additionally, the absence of skip connections results in a loss of fine details during feature reconstruction. To address these issues, we propose RD with Expert, which introduces a novel Expert-Teacher-Student network for simultaneous distillation of both the teacher encoder and student decoder. The added expert network enhances the student's ability to generate normal features and optimizes the teacher's differentiation between normal and abnormal features, reducing missed detections. Additionally, Guided Information Injection is designed to filter and transfer features from teacher to student, improving detail reconstruction and minimizing false positives. Experiments on several benchmarks prove that our method outperforms existing unsupervised AD methods under RD paradigm, fully unlocking RD's potential.
Abstract:Most state-of-the-art point trackers are trained on synthetic data due to the difficulty of annotating real videos for this task. However, this can result in suboptimal performance due to the statistical gap between synthetic and real videos. In order to understand these issues better, we introduce CoTracker3, comprising a new tracking model and a new semi-supervised training recipe. This allows real videos without annotations to be used during training by generating pseudo-labels using off-the-shelf teachers. The new model eliminates or simplifies components from previous trackers, resulting in a simpler and often smaller architecture. This training scheme is much simpler than prior work and achieves better results using 1,000 times less data. We further study the scaling behaviour to understand the impact of using more real unsupervised data in point tracking. The model is available in online and offline variants and reliably tracks visible and occluded points.
Abstract:Generating high-quality 3D content from text, single images, or sparse view images remains a challenging task with broad applications. Existing methods typically employ multi-view diffusion models to synthesize multi-view images, followed by a feed-forward process for 3D reconstruction. However, these approaches are often constrained by a small and fixed number of input views, limiting their ability to capture diverse viewpoints and, even worse, leading to suboptimal generation results if the synthesized views are of poor quality. To address these limitations, we propose Flex3D, a novel two-stage framework capable of leveraging an arbitrary number of high-quality input views. The first stage consists of a candidate view generation and curation pipeline. We employ a fine-tuned multi-view image diffusion model and a video diffusion model to generate a pool of candidate views, enabling a rich representation of the target 3D object. Subsequently, a view selection pipeline filters these views based on quality and consistency, ensuring that only the high-quality and reliable views are used for reconstruction. In the second stage, the curated views are fed into a Flexible Reconstruction Model (FlexRM), built upon a transformer architecture that can effectively process an arbitrary number of inputs. FlemRM directly outputs 3D Gaussian points leveraging a tri-plane representation, enabling efficient and detailed 3D generation. Through extensive exploration of design and training strategies, we optimize FlexRM to achieve superior performance in both reconstruction and generation tasks. Our results demonstrate that Flex3D achieves state-of-the-art performance, with a user study winning rate of over 92% in 3D generation tasks when compared to several of the latest feed-forward 3D generative models.
Abstract:Knowledge distillation based on student-teacher network is one of the mainstream solution paradigms for the challenging unsupervised Anomaly Detection task, utilizing the difference in representation capabilities of the teacher and student networks to implement anomaly localization. However, over-generalization of the student network to the teacher network may lead to negligible differences in representation capabilities of anomaly, thus affecting the detection effectiveness. Existing methods address the possible over-generalization by using differentiated students and teachers from the structural perspective or explicitly expanding distilled information from the content perspective, which inevitably result in an increased likelihood of underfitting of the student network and poor anomaly detection capabilities in anomaly center or edge. In this paper, we propose Dual-Modeling Decouple Distillation (DMDD) for the unsupervised anomaly detection. In DMDD, a Decouple Student-Teacher Network is proposed to decouple the initial student features into normality and abnormality features. We further introduce Dual-Modeling Distillation based on normal-anomaly image pairs, fitting normality features of anomalous image and the teacher features of the corresponding normal image, widening the distance between abnormality features and the teacher features in anomalous regions. Synthesizing these two distillation ideas, we achieve anomaly detection which focuses on both edge and center of anomaly. Finally, a Multi-perception Segmentation Network is proposed to achieve focused anomaly map fusion based on multiple attention. Experimental results on MVTec AD show that DMDD surpasses SOTA localization performance of previous knowledge distillation-based methods, reaching 98.85% on pixel-level AUC and 96.13% on PRO.
Abstract:Structure-from-motion (SfM) is a long-standing problem in the computer vision community, which aims to reconstruct the camera poses and 3D structure of a scene from a set of unconstrained 2D images. Classical frameworks solve this problem in an incremental manner by detecting and matching keypoints, registering images, triangulating 3D points, and conducting bundle adjustment. Recent research efforts have predominantly revolved around harnessing the power of deep learning techniques to enhance specific elements (e.g., keypoint matching), but are still based on the original, non-differentiable pipeline. Instead, we propose a new deep pipeline VGGSfM, where each component is fully differentiable and thus can be trained in an end-to-end manner. To this end, we introduce new mechanisms and simplifications. First, we build on recent advances in deep 2D point tracking to extract reliable pixel-accurate tracks, which eliminates the need for chaining pairwise matches. Furthermore, we recover all cameras simultaneously based on the image and track features instead of gradually registering cameras. Finally, we optimise the cameras and triangulate 3D points via a differentiable bundle adjustment layer. We attain state-of-the-art performance on three popular datasets, CO3D, IMC Phototourism, and ETH3D.
Abstract:Camera pose estimation is a long-standing computer vision problem that to date often relies on classical methods, such as handcrafted keypoint matching, RANSAC and bundle adjustment. In this paper, we propose to formulate the Structure from Motion (SfM) problem inside a probabilistic diffusion framework, modelling the conditional distribution of camera poses given input images. This novel view of an old problem has several advantages. (i) The nature of the diffusion framework mirrors the iterative procedure of bundle adjustment. (ii) The formulation allows a seamless integration of geometric constraints from epipolar geometry. (iii) It excels in typically difficult scenarios such as sparse views with wide baselines. (iv) The method can predict intrinsics and extrinsics for an arbitrary amount of images. We demonstrate that our method PoseDiffusion significantly improves over the classic SfM pipelines and the learned approaches on two real-world datasets. Finally, it is observed that our method can generalize across datasets without further training. Project page: https://posediffusion.github.io/
Abstract:Self-supervised audio-visual source localization aims to locate sound-source objects in video frames without extra annotations. Recent methods often approach this goal with the help of contrastive learning, which assumes only the audio and visual contents from the same video are positive samples for each other. However, this assumption would suffer from false negative samples in real-world training. For example, for an audio sample, treating the frames from the same audio class as negative samples may mislead the model and therefore harm the learned representations e.g., the audio of a siren wailing may reasonably correspond to the ambulances in multiple images). Based on this observation, we propose a new learning strategy named False Negative Aware Contrastive (FNAC) to mitigate the problem of misleading the training with such false negative samples. Specifically, we utilize the intra-modal similarities to identify potentially similar samples and construct corresponding adjacency matrices to guide contrastive learning. Further, we propose to strengthen the role of true negative samples by explicitly leveraging the visual features of sound sources to facilitate the differentiation of authentic sounding source regions. FNAC achieves state-of-the-art performances on Flickr-SoundNet, VGG-Sound, and AVSBench, which demonstrates the effectiveness of our method in mitigating the false negative issue. The code is available at \url{https://github.com/OpenNLPLab/FNAC_AVL}.
Abstract:We propose a new problem called audio-visual segmentation (AVS), in which the goal is to output a pixel-level map of the object(s) that produce sound at the time of the image frame. To facilitate this research, we construct the first audio-visual segmentation benchmark, i.e., AVSBench, providing pixel-wise annotations for sounding objects in audible videos. It contains three subsets: AVSBench-object (Single-source subset, Multi-sources subset) and AVSBench-semantic (Semantic-labels subset). Accordingly, three settings are studied: 1) semi-supervised audio-visual segmentation with a single sound source; 2) fully-supervised audio-visual segmentation with multiple sound sources, and 3) fully-supervised audio-visual semantic segmentation. The first two settings need to generate binary masks of sounding objects indicating pixels corresponding to the audio, while the third setting further requires generating semantic maps indicating the object category. To deal with these problems, we propose a new baseline method that uses a temporal pixel-wise audio-visual interaction module to inject audio semantics as guidance for the visual segmentation process. We also design a regularization loss to encourage audio-visual mapping during training. Quantitative and qualitative experiments on AVSBench compare our approach to several existing methods for related tasks, demonstrating that the proposed method is promising for building a bridge between the audio and pixel-wise visual semantics. Code is available at https://github.com/OpenNLPLab/AVSBench. Online benchmark is available at http://www.avlbench.opennlplab.cn.
Abstract:Generative models make huge progress to the photorealistic image synthesis in recent years. To enable human to steer the image generation process and customize the output, many works explore the interpretable dimensions of the latent space in GANs. Existing methods edit the attributes of the output image such as orientation or color scheme by varying the latent code along certain directions. However, these methods usually require additional human annotations for each pretrained model, and they mostly focus on editing global attributes. In this work, we propose a self-supervised approach to improve the spatial steerability of GANs without searching for steerable directions in the latent space or requiring extra annotations. Specifically, we design randomly sampled Gaussian heatmaps to be encoded into the intermediate layers of generative models as spatial inductive bias. Along with training the GAN model from scratch, these heatmaps are being aligned with the emerging attention of the GAN's discriminator in a self-supervised learning manner. During inference, human users can intuitively interact with the spatial heatmaps to edit the output image, such as varying the scene layout or moving objects in the scene. Extensive experiments show that the proposed method not only enables spatial editing over human faces, animal faces, outdoor scenes, and complicated indoor scenes, but also brings improvement in synthesis quality.
Abstract:Vision Transformers have achieved impressive performance in video classification, while suffering from the quadratic complexity caused by the Softmax attention mechanism. Some studies alleviate the computational costs by reducing the number of tokens in attention calculation, but the complexity is still quadratic. Another promising way is to replace Softmax attention with linear attention, which owns linear complexity but presents a clear performance drop. We find that such a drop in linear attention results from the lack of attention concentration on critical features. Therefore, we propose a feature fixation module to reweight the feature importance of the query and key before computing linear attention. Specifically, we regard the query, key, and value as various latent representations of the input token, and learn the feature fixation ratio by aggregating Query-Key-Value information. This is beneficial for measuring the feature importance comprehensively. Furthermore, we enhance the feature fixation by neighborhood association, which leverages additional guidance from spatial and temporal neighbouring tokens. The proposed method significantly improves the linear attention baseline and achieves state-of-the-art performance among linear video Transformers on three popular video classification benchmarks. With fewer parameters and higher efficiency, our performance is even comparable to some Softmax-based quadratic Transformers.