Abstract:This paper presents Bag-of-Concept Graph (BACON) to gift models with limited linguistic abilities to taste the privilege of Vision Language Models (VLMs) and boost downstream tasks such as detection, visual question answering (VQA), and image generation. Since the visual scenes in physical worlds are structured with complex relations between objects, BACON breaks down annotations into basic minimum elements and presents them in a graph structure. Element-wise style enables easy understanding, and structural composition liberates difficult locating. Careful prompt design births the BACON captions with the help of public-available VLMs and segmentation methods. In this way, we gather a dataset with 100K annotated images, which endow VLMs with remarkable capabilities, such as accurately generating BACON, transforming prompts into BACON format, envisioning scenarios in the style of BACONr, and dynamically modifying elements within BACON through interactive dialogue and more. Wide representative experiments, including detection, VQA, and image generation tasks, tell BACON as a lifeline to achieve previous out-of-reach tasks or excel in their current cutting-edge solutions.
Abstract:Diffusion models, which employ stochastic differential equations to sample images through integrals, have emerged as a dominant class of generative models. However, the rationality of the diffusion process itself receives limited attention, leaving the question of whether the problem is well-posed and well-conditioned. In this paper, we uncover a vexing propensity of diffusion models: they frequently exhibit the infinite Lipschitz near the zero point of timesteps. This poses a threat to the stability and accuracy of the diffusion process, which relies on integral operations. We provide a comprehensive evaluation of the issue from both theoretical and empirical perspectives. To address this challenge, we propose a novel approach, dubbed E-TSDM, which eliminates the Lipschitz singularity of the diffusion model near zero. Remarkably, our technique yields a substantial improvement in performance, e.g., on the high-resolution FFHQ dataset ($256\times256$). Moreover, as a byproduct of our method, we manage to achieve a dramatic reduction in the Frechet Inception Distance of other acceleration methods relying on network Lipschitz, including DDIM and DPM-Solver, by over 33$\%$. We conduct extensive experiments on diverse datasets to validate our theory and method. Our work not only advances the understanding of the general diffusion process, but also provides insights for the design of diffusion models.
Abstract:A good feature representation is the key to image classification. In practice, image classifiers may be applied in scenarios different from what they have been trained on. This so-called domain shift leads to a significant performance drop in image classification. Unsupervised domain adaptation (UDA) reduces the domain shift by transferring the knowledge learned from a labeled source domain to an unlabeled target domain. We perform feature disentanglement for UDA by distilling category-relevant features and excluding category-irrelevant features from the global feature maps. This disentanglement prevents the network from overfitting to category-irrelevant information and makes it focus on information useful for classification. This reduces the difficulty of domain alignment and improves the classification accuracy on the target domain. We propose a coarse-to-fine domain adaptation method called Domain Adaptation via Feature Disentanglement~(DAFD), which has two components: (1)the Category-Relevant Feature Selection (CRFS) module, which disentangles the category-relevant features from the category-irrelevant features, and (2)the Dynamic Local Maximum Mean Discrepancy (DLMMD) module, which achieves fine-grained alignment by reducing the discrepancy within the category-relevant features from different domains. Combined with the CRFS, the DLMMD module can align the category-relevant features properly. We conduct comprehensive experiment on four standard datasets. Our results clearly demonstrate the robustness and effectiveness of our approach in domain adaptive image classification tasks and its competitiveness to the state of the art.
Abstract:Diffusion models, which learn to reverse a signal destruction process to generate new data, typically require the signal at each step to have the same dimension. We argue that, considering the spatial redundancy in image signals, there is no need to maintain a high dimensionality in the evolution process, especially in the early generation phase. To this end, we make a theoretical generalization of the forward diffusion process via signal decomposition. Concretely, we manage to decompose an image into multiple orthogonal components and control the attenuation of each component when perturbing the image. That way, along with the noise strength increasing, we are able to diminish those inconsequential components and thus use a lower-dimensional signal to represent the source, barely losing information. Such a reformulation allows to vary dimensions in both training and inference of diffusion models. Extensive experiments on a range of datasets suggest that our approach substantially reduces the computational cost and achieves on-par or even better synthesis performance compared to baseline methods. We also show that our strategy facilitates high-resolution image synthesis and improves FID of diffusion model trained on FFHQ at $1024\times1024$ resolution from 52.40 to 10.46. Code and models will be made publicly available.
Abstract:Tables store rich numerical data, but numerical reasoning over tables is still a challenge. In this paper, we find that the spreadsheet formula, which performs calculations on numerical values in tables, is naturally a strong supervision of numerical reasoning. More importantly, large amounts of spreadsheets with expert-made formulae are available on the web and can be obtained easily. FORTAP is the first method for numerical-reasoning-aware table pretraining by leveraging large corpus of spreadsheet formulae. We design two formula pretraining tasks to explicitly guide FORTAP to learn numerical reference and calculation in semi-structured tables. FORTAP achieves state-of-the-art results on two representative downstream tasks, cell type classification and formula prediction, showing great potential of numerical-reasoning-aware pretraining.
Abstract:Deep learning has made remarkable achievement in many fields. However, learning the parameters of neural networks usually demands a large amount of labeled data. The algorithms of deep learning, therefore, encounter difficulties when applied to supervised learning where only little data are available. This specific task is called few-shot learning. To address it, we propose a novel algorithm for few-shot learning using discrete geometry, in the sense that the samples in a class are modeled as a reduced simplex. The volume of the simplex is used for the measurement of class scatter. During testing, combined with the test sample and the points in the class, a new simplex is formed. Then the similarity between the test sample and the class can be quantized with the ratio of volumes of the new simplex to the original class simplex. Moreover, we present an approach to constructing simplices using local regions of feature maps yielded by convolutional neural networks. Experiments on Omniglot and miniImageNet verify the effectiveness of our simplex algorithm on few-shot learning.