Abstract:We present The Matrix, the first foundational realistic world simulator capable of generating continuous 720p high-fidelity real-scene video streams with real-time, responsive control in both first- and third-person perspectives, enabling immersive exploration of richly dynamic environments. Trained on limited supervised data from AAA games like Forza Horizon 5 and Cyberpunk 2077, complemented by large-scale unsupervised footage from real-world settings like Tokyo streets, The Matrix allows users to traverse diverse terrains -- deserts, grasslands, water bodies, and urban landscapes -- in continuous, uncut hour-long sequences. Operating at 16 FPS, the system supports real-time interactivity and demonstrates zero-shot generalization, translating virtual game environments to real-world contexts where collecting continuous movement data is often infeasible. For example, The Matrix can simulate a BMW X3 driving through an office setting--an environment present in neither gaming data nor real-world sources. This approach showcases the potential of AAA game data to advance robust world models, bridging the gap between simulations and real-world applications in scenarios with limited data.
Abstract:Wireless communications are significantly impacted by the propagation environment, particularly in doubly selective channels with variations in both time and frequency domains. Orthogonal Time Frequency Space (OTFS) modulation has emerged as a promising solution; however, its high equalization complexity, if performed in the delay-Doppler domain, limits its universal application. This article explores domain-adaptive system design, dynamically selecting best-fit domains for modulation, pilot placement, and equalization based on channel conditions, to enhance performance across diverse environments. We examine domain classifications and connections, signal designs, and equalization techniques with domain adaptivity, and finally highlight future research opportunities.
Abstract:The need for data security and model integrity has been accentuated by the rapid adoption of AI and ML in data-driven domains including healthcare, finance, and security. Large models are crucial for tasks like diagnosing diseases and forecasting finances but tend to be delicate and not very scalable. Decentralized systems solve this issue by distributing the workload and reducing central points of failure. Yet, data and processes spread across different nodes can be at risk of unauthorized access, especially when they involve sensitive information. Nesa solves these challenges with a comprehensive framework using multiple techniques to protect data and model outputs. This includes zero-knowledge proofs for secure model verification. The framework also introduces consensus-based verification checks for consistent outputs across nodes and confirms model integrity. Split Learning divides models into segments processed by different nodes for data privacy by preventing full data access at any single point. For hardware-based security, trusted execution environments are used to protect data and computations within secure zones. Nesa's state-of-the-art proofs and principles demonstrate the framework's effectiveness, making it a promising approach for securely democratizing artificial intelligence.
Abstract:Generalizable vehicle re-identification (ReID) aims to enable the well-trained model in diverse source domains to broadly adapt to unknown target domains without additional fine-tuning or retraining. However, it still faces the challenges of domain shift problem and has difficulty accurately generalizing to unknown target domains. This limitation occurs because the model relies heavily on primary domain-invariant features in the training data and pays less attention to potentially valuable secondary features. To solve this complex and common problem, this paper proposes the two-stage Multi-expert Knowledge Confrontation and Collaboration (MiKeCoCo) method, which incorporates multiple experts with unique perspectives into Contrastive Language-Image Pretraining (CLIP) and fully leverages high-level semantic knowledge for comprehensive feature representation. Specifically, we propose to construct the learnable prompt set of all specific-perspective experts by adversarial learning in the latent space of visual features during the first stage of training. The learned prompt set with high-level semantics is then utilized to guide representation learning of the multi-level features for final knowledge fusion in the next stage. In this process of knowledge fusion, although multiple experts employ different assessment ways to examine the same vehicle, their common goal is to confirm the vehicle's true identity. Their collective decision can ensure the accuracy and consistency of the evaluation results. Furthermore, we design different image inputs for two-stage training, which include image component separation and diversity enhancement in order to extract the ID-related prompt representation and to obtain feature representation highlighted by all experts, respectively. Extensive experimental results demonstrate that our method achieves state-of-the-art recognition performance.
Abstract:This paper presents Bag-of-Concept Graph (BACON) to gift models with limited linguistic abilities to taste the privilege of Vision Language Models (VLMs) and boost downstream tasks such as detection, visual question answering (VQA), and image generation. Since the visual scenes in physical worlds are structured with complex relations between objects, BACON breaks down annotations into basic minimum elements and presents them in a graph structure. Element-wise style enables easy understanding, and structural composition liberates difficult locating. Careful prompt design births the BACON captions with the help of public-available VLMs and segmentation methods. In this way, we gather a dataset with 100K annotated images, which endow VLMs with remarkable capabilities, such as accurately generating BACON, transforming prompts into BACON format, envisioning scenarios in the style of BACONr, and dynamically modifying elements within BACON through interactive dialogue and more. Wide representative experiments, including detection, VQA, and image generation tasks, tell BACON as a lifeline to achieve previous out-of-reach tasks or excel in their current cutting-edge solutions.
Abstract:Inference with modern Large Language Models (LLMs) is expensive and time-consuming, and speculative sampling has proven to be an effective solution. Most speculative sampling methods such as EAGLE use a static draft tree, implicitly assuming that the acceptance rate of draft tokens depends only on their position. Interestingly, we found that the acceptance rate of draft tokens is also context-dependent. In this paper, building upon EAGLE, we propose EAGLE-2, which introduces a new technique of context-aware dynamic draft tree into drafting modeling. This improvement leverages the fact that the draft model of EAGLE is well-calibrated: the confidence scores from the draft model approximate acceptance rates with small errors. We conducted extensive evaluations on three series of LLMs and six tasks, with EAGLE-2 achieving speedup ratios 3.05x-4.26x, which is 20%-40% faster than EAGLE-1. EAGLE-2 also ensures that the distribution of the generated text remains unchanged, making it a lossless acceleration algorithm.
Abstract:Referring expression comprehension (REC) involves localizing a target instance based on a textual description. Recent advancements in REC have been driven by large multimodal models (LMMs) like CogVLM, which achieved 92.44% accuracy on RefCOCO. However, this study questions whether existing benchmarks such as RefCOCO, RefCOCO+, and RefCOCOg, capture LMMs' comprehensive capabilities. We begin with a manual examination of these benchmarks, revealing high labeling error rates: 14% in RefCOCO, 24% in RefCOCO+, and 5% in RefCOCOg, which undermines the authenticity of evaluations. We address this by excluding problematic instances and reevaluating several LMMs capable of handling the REC task, showing significant accuracy improvements, thus highlighting the impact of benchmark noise. In response, we introduce Ref-L4, a comprehensive REC benchmark, specifically designed to evaluate modern REC models. Ref-L4 is distinguished by four key features: 1) a substantial sample size with 45,341 annotations; 2) a diverse range of object categories with 365 distinct types and varying instance scales from 30 to 3,767; 3) lengthy referring expressions averaging 24.2 words; and 4) an extensive vocabulary comprising 22,813 unique words. We evaluate a total of 24 large models on Ref-L4 and provide valuable insights. The cleaned versions of RefCOCO, RefCOCO+, and RefCOCOg, as well as our Ref-L4 benchmark and evaluation code, are available at https://github.com/JierunChen/Ref-L4.
Abstract:Language model (LM) watermarking techniques inject a statistical signal into LM-generated content by substituting the random sampling process with pseudo-random sampling, using watermark keys as the random seed. Among these statistical watermarking approaches, distortion-free watermarks are particularly crucial because they embed watermarks into LM-generated content without compromising generation quality. However, one notable limitation of pseudo-random sampling compared to true-random sampling is that, under the same watermark keys (i.e., key collision), the results of pseudo-random sampling exhibit correlations. This limitation could potentially undermine the distortion-free property. Our studies reveal that key collisions are inevitable due to the limited availability of watermark keys, and existing distortion-free watermarks exhibit a significant distribution bias toward the original LM distribution in the presence of key collisions. Moreover, achieving a perfect distortion-free watermark is impossible as no statistical signal can be embedded under key collisions. To reduce the distribution bias caused by key collisions, we introduce a new family of distortion-free watermarks--beta-watermark. Experimental results support that the beta-watermark can effectively reduce the distribution bias under key collisions.
Abstract:The recent surge in artificial intelligence (AI), characterized by the prominence of large language models (LLMs), has ushered in fundamental transformations across the globe. However, alongside these advancements, concerns surrounding the legitimacy of LLMs have grown, posing legal challenges to their extensive applications. Compounding these concerns, the parameters of LLMs are often treated as intellectual property, restricting direct investigations. In this study, we address a fundamental challenge within the realm of AI legislation: the need to establish the authenticity of outputs generated by LLMs. To tackle this issue, we present zkLLM, which stands as the inaugural specialized zero-knowledge proof tailored for LLMs to the best of our knowledge. Addressing the persistent challenge of non-arithmetic operations in deep learning, we introduce tlookup, a parallelized lookup argument designed for non-arithmetic tensor operations in deep learning, offering a solution with no asymptotic overhead. Furthermore, leveraging the foundation of tlookup, we introduce zkAttn, a specialized zero-knowledge proof crafted for the attention mechanism, carefully balancing considerations of running time, memory usage, and accuracy. Empowered by our fully parallelized CUDA implementation, zkLLM emerges as a significant stride towards achieving efficient zero-knowledge verifiable computations over LLMs. Remarkably, for LLMs boasting 13 billion parameters, our approach enables the generation of a correctness proof for the entire inference process in under 15 minutes. The resulting proof, compactly sized at less than 200 kB, is designed to uphold the privacy of the model parameters, ensuring no inadvertent information leakage.
Abstract:The recent breakthroughs in large language models (LLMs) are positioned to transition many areas of software. The technologies of interacting with data particularly have an important entanglement with LLMs as efficient and intuitive data interactions are paramount. In this paper, we present DB-GPT, a revolutionary and product-ready Python library that integrates LLMs into traditional data interaction tasks to enhance user experience and accessibility. DB-GPT is designed to understand data interaction tasks described by natural language and provide context-aware responses powered by LLMs, making it an indispensable tool for users ranging from novice to expert. Its system design supports deployment across local, distributed, and cloud environments. Beyond handling basic data interaction tasks like Text-to-SQL with LLMs, it can handle complex tasks like generative data analysis through a Multi-Agents framework and the Agentic Workflow Expression Language (AWEL). The Service-oriented Multi-model Management Framework (SMMF) ensures data privacy and security, enabling users to employ DB-GPT with private LLMs. Additionally, DB-GPT offers a series of product-ready features designed to enable users to integrate DB-GPT within their product environments easily. The code of DB-GPT is available at Github(https://github.com/eosphoros-ai/DB-GPT) which already has over 10.7k stars. Please install DB-GPT for your own usage with the instructions(https://github.com/eosphoros-ai/DB-GPT#install) and watch a 5-minute introduction video on Youtube(https://youtu.be/n_8RI1ENyl4) to further investigate DB-GPT.