Abstract:The application of machine learning to the study of coronal mass ejections (CMEs) and their impacts on Earth has seen significant growth recently. Understanding and forecasting CME geoeffectiveness is crucial for protecting infrastructure in space and ensuring the resilience of technological systems on Earth. Here we present GeoCME, a deep-learning framework designed to predict, deterministically or probabilistically, whether a CME event that arrives at Earth will cause a geomagnetic storm. A geomagnetic storm is defined as a disturbance of the Earth's magnetosphere during which the minimum Dst index value is less than -50 nT. GeoCME is trained on observations from the instruments including LASCO C2, EIT and MDI on board the Solar and Heliospheric Observatory (SOHO), focusing on a dataset that includes 136 halo/partial halo CMEs in Solar Cycle 23. Using ensemble and transfer learning techniques, GeoCME is capable of extracting features hidden in the SOHO observations and making predictions based on the learned features. Our experimental results demonstrate the good performance of GeoCME, achieving a Matthew's correlation coefficient of 0.807 and a true skill statistics score of 0.714 when the tool is used as a deterministic prediction model. When the tool is used as a probabilistic forecasting model, it achieves a Brier score of 0.094 and a Brier skill score of 0.493. These results are promising, showing that the proposed GeoCME can help enhance our understanding of CME-triggered solar-terrestrial interactions.
Abstract:With recent missions such as advanced space-based observatories like the Solar Dynamics Observatory (SDO) and Parker Solar Probe, and ground-based telescopes like the Daniel K. Inouye Solar Telescope (DKIST), the volume, velocity, and variety of data have made solar physics enter a transformative era as solar physics big data (SPBD). With the recent advancement of deep computer vision, there are new opportunities in SPBD for tackling problems that were previously unsolvable. However, there are new challenges arising due to the inherent characteristics of SPBD and deep computer vision models. This vision paper presents an overview of the different types of SPBD, explores new opportunities in applying deep computer vision to SPBD, highlights the unique challenges, and outlines several potential future research directions.
Abstract:Studying the sun's outer atmosphere is challenging due to its complex magnetic fields impacting solar activities. Magnetohydrodynamics (MHD) simulations help model these interactions but are extremely time-consuming (usually on a scale of days). Our research applies the Fourier Neural Operator (FNO) to accelerate the coronal magnetic field modeling, specifically, the Bifrost MHD model. We apply Tensorized FNO (TFNO) to generate solutions from partial differential equations (PDEs) over a 3D domain efficiently. TFNO's performance is compared with other deep learning methods, highlighting its accuracy and scalability. Physics analysis confirms that TFNO is reliable and capable of accelerating MHD simulations with high precision. This advancement improves efficiency in data handling, enhances predictive capabilities, and provides a better understanding of magnetic topologies.
Abstract:Image super-resolution has been an important subject in image processing and recognition. Here, we present an attention-aided convolutional neural network (CNN) for solar image super-resolution. Our method, named SolarCNN, aims to enhance the quality of line-of-sight (LOS) magnetograms of solar active regions (ARs) collected by the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO). The ground-truth labels used for training SolarCNN are the LOS magnetograms collected by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Solar ARs consist of strong magnetic fields in which magnetic energy can suddenly be released to produce extreme space weather events, such as solar flares, coronal mass ejections, and solar energetic particles. SOHO/MDI covers Solar Cycle 23, which is stronger with more eruptive events than Cycle 24. Enhanced SOHO/MDI magnetograms allow for better understanding and forecasting of violent events of space weather. Experimental results show that SolarCNN improves the quality of SOHO/MDI magnetograms in terms of the structural similarity index measure (SSIM), Pearson's correlation coefficient (PCC), and the peak signal-to-noise ratio (PSNR).
Abstract:We propose a novel deep learning framework, named SYMHnet, which employs a graph neural network and a bidirectional long short-term memory network to cooperatively learn patterns from solar wind and interplanetary magnetic field parameters for short-term forecasts of the SYM-H index based on 1-minute and 5-minute resolution data. SYMHnet takes, as input, the time series of the parameters' values provided by NASA's Space Science Data Coordinated Archive and predicts, as output, the SYM-H index value at time point t + w hours for a given time point t where w is 1 or 2. By incorporating Bayesian inference into the learning framework, SYMHnet can quantify both aleatoric (data) uncertainty and epistemic (model) uncertainty when predicting future SYM-H indices. Experimental results show that SYMHnet works well at quiet time and storm time, for both 1-minute and 5-minute resolution data. The results also show that SYMHnet generally performs better than related machine learning methods. For example, SYMHnet achieves a forecast skill score (FSS) of 0.343 compared to the FSS of 0.074 of a recent gradient boosting machine (GBM) method when predicting SYM-H indices (1 hour in advance) in a large storm (SYM-H = -393 nT) using 5-minute resolution data. When predicting the SYM-H indices (2 hours in advance) in the large storm, SYMHnet achieves an FSS of 0.553 compared to the FSS of 0.087 of the GBM method. In addition, SYMHnet can provide results for both data and model uncertainty quantification, whereas the related methods cannot.
Abstract:Coronal mass ejections (CMEs) are massive solar eruptions, which have a significant impact on Earth. In this paper, we propose a new method, called DeepCME, to estimate two properties of CMEs, namely, CME mass and kinetic energy. Being able to estimate these properties helps better understand CME dynamics. Our study is based on the CME catalog maintained at the Coordinated Data Analysis Workshops (CDAW) Data Center, which contains all CMEs manually identified since 1996 using the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO). We use LASCO C2 data in the period between January 1996 and December 2020 to train, validate and test DeepCME through 10-fold cross validation. The DeepCME method is a fusion of three deep learning models, including ResNet, InceptionNet, and InceptionResNet. Our fusion model extracts features from LASCO C2 images, effectively combining the learning capabilities of the three component models to jointly estimate the mass and kinetic energy of CMEs. Experimental results show that the fusion model yields a mean relative error (MRE) of 0.013 (0.009, respectively) compared to the MRE of 0.019 (0.017, respectively) of the best component model InceptionResNet (InceptionNet, respectively) in estimating the CME mass (kinetic energy, respectively). To our knowledge, this is the first time that deep learning has been used for CME mass and kinetic energy estimations.
Abstract:Solar activity is usually caused by the evolution of solar magnetic fields. Magnetic field parameters derived from photospheric vector magnetograms of solar active regions have been used to analyze and forecast eruptive events such as solar flares and coronal mass ejections. Unfortunately, the most recent solar cycle 24 was relatively weak with few large flares, though it is the only solar cycle in which consistent time-sequence vector magnetograms have been available through the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) since its launch in 2010. In this paper, we look into another major instrument, namely the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) from 1996 to 2010. The data archive of SOHO/MDI covers more active solar cycle 23 with many large flares. However, SOHO/MDI data only has line-of-sight (LOS) magnetograms. We propose a new deep learning method, named MagNet, to learn from combined LOS magnetograms, Bx and By taken by SDO/HMI along with H-alpha observations collected by the Big Bear Solar Observatory (BBSO), and to generate vector components Bx' and By', which would form vector magnetograms with observed LOS data. In this way, we can expand the availability of vector magnetograms to the period from 1996 to present. Experimental results demonstrate the good performance of the proposed method. To our knowledge, this is the first time that deep learning has been used to generate photospheric vector magnetograms of solar active regions for SOHO/MDI using SDO/HMI and H-alpha data.
Abstract:Obtaining high-quality magnetic and velocity fields through Stokes inversion is crucial in solar physics. In this paper, we present a new deep learning method, named Stacked Deep Neural Networks (SDNN), for inferring line-of-sight (LOS) velocities and Doppler widths from Stokes profiles collected by the Near InfraRed Imaging Spectropolarimeter (NIRIS) on the 1.6 m Goode Solar Telescope (GST) at the Big Bear Solar Observatory (BBSO). The training data of SDNN is prepared by a Milne-Eddington (ME) inversion code used by BBSO. We quantitatively assess SDNN, comparing its inversion results with those obtained by the ME inversion code and related machine learning (ML) algorithms such as multiple support vector regression, multilayer perceptrons and a pixel-level convolutional neural network. Major findings from our experimental study are summarized as follows. First, the SDNN-inferred LOS velocities are highly correlated to the ME-calculated ones with the Pearson product-moment correlation coefficient being close to 0.9 on average. Second, SDNN is faster, while producing smoother and cleaner LOS velocity and Doppler width maps, than the ME inversion code. Third, the maps produced by SDNN are closer to ME's maps than those from the related ML algorithms, demonstrating the better learning capability of SDNN than the ML algorithms. Finally, comparison between the inversion results of ME and SDNN based on GST/NIRIS and those from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory in flare-prolific active region NOAA 12673 is presented. We also discuss extensions of SDNN for inferring vector magnetic fields with empirical evaluation.
Abstract:Solar flares, especially the M- and X-class flares, are often associated with coronal mass ejections (CMEs). They are the most important sources of space weather effects, that can severely impact the near-Earth environment. Thus it is essential to forecast flares (especially the M-and X-class ones) to mitigate their destructive and hazardous consequences. Here, we introduce several statistical and Machine Learning approaches to the prediction of the AR's Flare Index (FI) that quantifies the flare productivity of an AR by taking into account the numbers of different class flares within a certain time interval. Specifically, our sample includes 563 ARs appeared on solar disk from May 2010 to Dec 2017. The 25 magnetic parameters, provided by the Space-weather HMI Active Region Patches (SHARP) from Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO), characterize coronal magnetic energy stored in ARs by proxy and are used as the predictors. We investigate the relationship between these SHARP parameters and the FI of ARs with a machine-learning algorithm (spline regression) and the resampling method (Synthetic Minority Over-Sampling Technique for Regression with Gaussian Noise, short by SMOGN). Based on the established relationship, we are able to predict the value of FIs for a given AR within the next 1-day period. Compared with other 4 popular machine learning algorithms, our methods improve the accuracy of FI prediction, especially for large FI. In addition, we sort the importance of SHARP parameters by Borda Count method calculated from the ranks that are rendered by 9 different machine learning methods.
Abstract:The disturbance storm time (Dst) index is an important and useful measurement in space weather research. It has been used to characterize the size and intensity of a geomagnetic storm. A negative Dst value means that the Earth's magnetic field is weakened, which happens during storms. In this paper, we present a novel deep learning method, called the Dst Transformer, to perform short-term, 1-6 hour ahead, forecasting of the Dst index based on the solar wind parameters provided by the NASA Space Science Data Coordinated Archive. The Dst Transformer combines a multi-head attention layer with Bayesian inference, which is capable of quantifying both aleatoric uncertainty and epistemic uncertainty when making Dst predictions. Experimental results show that the proposed Dst Transformer outperforms related machine learning methods in terms of the root mean square error and R-squared. Furthermore, the Dst Transformer can produce both data and model uncertainty quantification results, which can not be done by the existing methods. To our knowledge, this is the first time that Bayesian deep learning has been used for Dst index forecasting.