The need for data security and model integrity has been accentuated by the rapid adoption of AI and ML in data-driven domains including healthcare, finance, and security. Large models are crucial for tasks like diagnosing diseases and forecasting finances but tend to be delicate and not very scalable. Decentralized systems solve this issue by distributing the workload and reducing central points of failure. Yet, data and processes spread across different nodes can be at risk of unauthorized access, especially when they involve sensitive information. Nesa solves these challenges with a comprehensive framework using multiple techniques to protect data and model outputs. This includes zero-knowledge proofs for secure model verification. The framework also introduces consensus-based verification checks for consistent outputs across nodes and confirms model integrity. Split Learning divides models into segments processed by different nodes for data privacy by preventing full data access at any single point. For hardware-based security, trusted execution environments are used to protect data and computations within secure zones. Nesa's state-of-the-art proofs and principles demonstrate the framework's effectiveness, making it a promising approach for securely democratizing artificial intelligence.