Abstract:PET imaging is widely employed for observing biological metabolic activities within the human body. However, numerous benign conditions can cause increased uptake of radiopharmaceuticals, confounding differentiation from malignant tumors. Several studies have indicated that dual-time PET imaging holds promise in distinguishing between malignant and benign tumor processes. Nevertheless, the hour-long distribution period of radiopharmaceuticals post-injection complicates the determination of optimal timing for the second scan, presenting challenges in both practical applications and research. Notably, we have identified that delay time PET imaging can be framed as an image-to-image conversion problem. Motivated by this insight, we propose a novel spatial-temporal guided diffusion transformer probabilistic model (st-DTPM) to solve dual-time PET imaging prediction problem. Specifically, this architecture leverages the U-net framework that integrates patch-wise features of CNN and pixel-wise relevance of Transformer to obtain local and global information. And then employs a conditional DDPM model for image synthesis. Furthermore, on spatial condition, we concatenate early scan PET images and noisy PET images on every denoising step to guide the spatial distribution of denoising sampling. On temporal condition, we convert diffusion time steps and delay time to a universal time vector, then embed it to each layer of model architecture to further improve the accuracy of predictions. Experimental results demonstrated the superiority of our method over alternative approaches in preserving image quality and structural information, thereby affirming its efficacy in predictive task.
Abstract:This paper investigates controllable generation for large language models (LLMs) with prompt-based control, focusing on Lexically Constrained Generation (LCG). We systematically evaluate the performance of LLMs on satisfying lexical constraints with prompt-based control, as well as their efficacy in downstream applications. We conclude that LLMs face significant challenges in consistently satisfying lexical constraints with prompt-based control. We identified three key limitations of LLMs for LCG, including (1) position bias, where LLMs tend to satisfy constraints that appear in specific positions within the input; (2) low responsiveness to decoding parameters, which render minimal impact on control of LLMs; and (3) struggle with handling the inherent complexity of certain constraints (e.g., compound words). To address these issues, we introduce a Divide and Conquer Generation strategy, effective for both white-box and black-box LLMs, to enhance LLMs performance in LCG tasks, which demonstrates over 90% improvement on success rate in the most challenging LCG task. Our analysis provides valuable insights into the performance of LLMs in LCG with prompt-based control, and our proposed strategy offers a pathway to more sophisticated and customized text generation applications.
Abstract:Predictive modeling often faces challenges due to limited data availability and quality, especially in domains where collected features are weakly correlated with outcomes and where additional feature collection is constrained by ethical or practical difficulties. Traditional machine learning (ML) models struggle to incorporate unobserved yet critical factors. In this work, we introduce an effective approach to formulate latent feature mining as text-to-text propositional logical reasoning. We propose FLAME (Faithful Latent Feature Mining for Predictive Model Enhancement), a framework that leverages large language models (LLMs) to augment observed features with latent features and enhance the predictive power of ML models in downstream tasks. Our framework is generalizable across various domains with necessary domain-specific adaptation, as it is designed to incorporate contextual information unique to each area, ensuring effective transfer to different areas facing similar data availability challenges. We validate our framework with two case studies: (1) the criminal justice system, a domain characterized by limited and ethically challenging data collection; (2) the healthcare domain, where patient privacy concerns and the complexity of medical data limit comprehensive feature collection. Our results show that inferred latent features align well with ground truth labels and significantly enhance the downstream classifier.
Abstract:Automatic melody-to-lyric generation aims to produce lyrics that align with a given melody. Although previous work can generate lyrics based on high-level control signals, such as keywords or genre, they often struggle with three challenges: (1) lack of controllability, as prior works are only able to produce lyrics from scratch, with little or no control over the content; (2) inability to generate fully structured songs with the desired format; and (3) failure to align prominent words in the lyrics with prominent notes in the melody, resulting in poor lyrics-melody alignment. In this work, we introduce REFFLY (REvision Framework For Lyrics), the first revision framework designed to edit arbitrary forms of plain text draft into high-quality, full-fledged song lyrics. Our approach ensures that the generated lyrics retain the original meaning of the draft, align with the melody, and adhere to the desired song structures. We demonstrate that REFFLY performs well in diverse task settings, such as lyrics revision and song translation. Experimental results show that our model outperforms strong baselines, such as Lyra (Tian et al. 2023) and GPT-4, by 25% in both musicality and text quality.
Abstract:Positron emission tomography (PET) is an advanced medical imaging technique that plays a crucial role in non-invasive clinical diagnosis. However, while reducing radiation exposure through low-dose PET scans is beneficial for patient safety, it often results in insufficient statistical data. This scarcity of data poses significant challenges for accurately reconstructing high-quality images, which are essential for reliable diagnostic outcomes. In this research, we propose a diffusion transformer model (DTM) guided by joint compact prior (JCP) to enhance the reconstruction quality of low-dose PET imaging. In light of current research findings, we present a pioneering PET reconstruction model that integrates diffusion and transformer models for joint optimization. This model combines the powerful distribution mapping abilities of diffusion models with the capacity of transformers to capture long-range dependencies, offering significant advantages for low-dose PET reconstruction. Additionally, the incorporation of the lesion refining block and penalized weighted least squares (PWLS) enhance the recovery capability of lesion regions and preserves detail information, solving blurring problems in lesion areas and texture details of most deep learning frameworks. Experimental results demonstrate the effectiveness of DTM in enhancing image quality and preserving critical clinical information for low-dose PET scans. Our approach not only reduces radiation exposure risks but also provides a more reliable PET imaging tool for early disease detection and patient management.
Abstract:Proteins are essential to life's processes, underpinning evolution and diversity. Advances in sequencing technology have revealed millions of proteins, underscoring the need for sophisticated pre-trained protein models for biological analysis and AI development. Facebook's ESM2, the most advanced protein language model to date, leverages a masked prediction task for unsupervised learning, crafting amino acid representations with notable biochemical accuracy. Yet, it lacks in delivering functional protein insights, signaling an opportunity for enhancing representation quality.Our study addresses this gap by incorporating protein family classification into ESM2's training.This approach, augmented with Community Propagation-Based Clustering Algorithm, improves global protein representations, while a contextual prediction task fine-tunes local amino acid accuracy. Significantly, our model achieved state-of-the-art results in several downstream experiments, demonstrating the power of combining global and local methodologies to substantially boost protein representation quality.
Abstract:Positron emission tomography (PET) serves as an essential tool for diagnosis of encephalopathy and brain science research. However, it suffers from the limited choice of tracers. Nowadays, with the wide application of PET imaging in neuropsychiatric treatment, 6-18F-fluoro-3, 4-dihydroxy-L-phenylalanine (DOPA) has been found to be more effective than 18F-labeled fluorine-2-deoxyglucose (FDG) in the field. Nevertheless, due to the complexity of its preparation and other limitations, DOPA is far less widely used than FDG. To address this issue, a tracer conversion invertible neural network (TC-INN) for image projection is developed to map FDG images to DOPA images through deep learning. More diagnostic information is obtained by generating PET images from FDG to DOPA. Specifically, the proposed TC-INN consists of two separate phases, one for training traceable data, the other for rebuilding new data. The reference DOPA PET image is used as a learning target for the corresponding network during the training process of tracer conversion. Meanwhile, the invertible network iteratively estimates the resultant DOPA PET data and compares it to the reference DOPA PET data. Notably, the reversible model employs variable enhancement technique to achieve better power generation. Moreover, image registration needs to be performed before training due to the angular deviation of the acquired FDG and DOPA data information. Experimental results exhibited excellent generation capability in mapping between FDG and DOPA, suggesting that PET tracer conversion has great potential in the case of limited tracer applications.
Abstract:We propose Multiple Experts Fine-tuning Framework to build a financial large language model (LLM), DISC-FinLLM. Our methodology improves general LLMs by endowing them with multi-turn question answering abilities, domain text processing capabilities, mathematical computation skills, and retrieval-enhanced generation capabilities. We build a financial instruction-tuning dataset named DISC-FIN-SFT, including instruction samples of four categories (consulting, NLP tasks, computing and retrieval-augmented generation). Evaluations conducted on multiple benchmarks demonstrate that our model performs better than baseline models in various financial scenarios. Further resources can be found at https://github.com/FudanDISC/DISC-FinLLM.
Abstract:Attenuation correction (AC) is essential for the generation of artifact-free and quantitatively accurate positron emission tomography (PET) images. However, AC of PET faces challenges including inter-scan motion and erroneous transformation of structural voxel-intensities to PET attenuation-correction factors. Nowadays, the problem of AC for quantitative PET have been solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT). Meanwhile, considering the feasibility of a deep learning approach for PET AC without anatomical imaging, this paper develops a PET AC method, which uses deep learning to generate continuously valued CT images from non-attenuation corrected PET images for AC on brain PET imaging. Specifically, an invertible network combined with the variable augmentation strategy that can achieve the bidirectional inference processes is proposed for synthetic CT generation (IVNAC). To evaluate the performance of the proposed algorithm, we conducted a comprehensive study on a total of 1440 data from 37 clinical patients using comparative algorithms (such as Cycle-GAN and Pix2pix). Perceptual analysis and quantitative evaluations illustrate that the invertible network for PET AC outperforms other existing AC models, which demonstrates the potential of the proposed method and the feasibility of achieving brain PET AC without CT.
Abstract:We propose DISC-LawLLM, an intelligent legal system utilizing large language models (LLMs) to provide a wide range of legal services. We adopt legal syllogism prompting strategies to construct supervised fine-tuning datasets in the Chinese Judicial domain and fine-tune LLMs with legal reasoning capability. We augment LLMs with a retrieval module to enhance models' ability to access and utilize external legal knowledge. A comprehensive legal benchmark, DISC-Law-Eval, is presented to evaluate intelligent legal systems from both objective and subjective dimensions. Quantitative and qualitative results on DISC-Law-Eval demonstrate the effectiveness of our system in serving various users across diverse legal scenarios. The detailed resources are available at https://github.com/FudanDISC/DISC-LawLLM.