CMM, LTCI
Abstract:Neural image representations have recently emerged as a promising technique for storing, streaming, and rendering visual data. Coupled with learning-based workflows, these novel representations have demonstrated remarkable visual fidelity and memory efficiency. However, existing neural image representations often rely on explicit uniform data structures without content adaptivity or computation-intensive implicit models, limiting their adoption in real-time graphics applications. Inspired by recent advances in radiance field rendering, we propose Image-GS, a content-adaptive image representation. Using anisotropic 2D Gaussians as the basis, Image-GS shows high memory efficiency, supports fast random access, and offers a natural level of detail stack. Leveraging a tailored differentiable renderer, Image-GS fits a target image by adaptively allocating and progressively optimizing a set of 2D Gaussians. The generalizable efficiency and fidelity of Image-GS are validated against several recent neural image representations and industry-standard texture compressors on a diverse set of images. Notably, its memory and computation requirements solely depend on and linearly scale with the number of 2D Gaussians, providing flexible controls over the trade-off between visual fidelity and run-time efficiency. We hope this research offers insights for developing new applications that require adaptive quality and resource control, such as machine perception, asset streaming, and content generation.
Abstract:In this report, we present our solution for the semantic segmentation in adverse weather, in UG2+ Challenge at CVPR 2024. To achieve robust and accurate segmentation results across various weather conditions, we initialize the InternImage-H backbone with pre-trained weights from the large-scale joint dataset and enhance it with the state-of-the-art Upernet segmentation method. Specifically, we utilize offline and online data augmentation approaches to extend the train set, which helps us to further improve the performance of the segmenter. As a result, our proposed solution demonstrates advanced performance on the test set and achieves 3rd position in this challenge.
Abstract:Self-correction has emerged as a promising solution to boost the reasoning performance of large language models (LLMs), where LLMs refine their solutions using self-generated critiques that pinpoint the errors. This work explores whether smaller-size (<= 13B) language models (LMs) have the ability of self-correction on reasoning tasks with minimal inputs from stronger LMs. We propose a novel pipeline that prompts smaller LMs to collect self-correction data that supports the training of self-refinement abilities. First, we leverage correct solutions to guide the model in critiquing their incorrect responses. Second, the generated critiques, after filtering, are used for supervised fine-tuning of the self-correcting reasoner through solution refinement. Our experimental results show improved self-correction abilities of two models on five datasets spanning math and commonsense reasoning, with notable performance gains when paired with a strong GPT-4-based verifier, though limitations are identified when using a weak self-verifier for determining when to correct.
Abstract:Open-domain question answering (QA) systems are often built with retrieval modules. However, retrieving passages from a given source is known to suffer from insufficient knowledge coverage. Alternatively, prompting large language models (LLMs) to generate contextual passages based on their parametric knowledge has been shown to improve QA performance. Yet, LLMs tend to "hallucinate" content that conflicts with the retrieved knowledge. Based on the intuition that answers supported by both sources are more likely to be correct, we propose COMBO, a Compatibility-Oriented knowledge Merging for Better Open-domain QA framework, to effectively leverage the two sources of information. Concretely, we match LLM-generated passages with retrieved counterparts into compatible pairs, based on discriminators trained with silver compatibility labels. Then a Fusion-in-Decoder-based reader model handles passage pairs to arrive at the final answer. Experiments show that COMBO outperforms competitive baselines on three out of four tested open-domain QA benchmarks. Further analysis reveals that our proposed framework demonstrates greater efficacy in scenarios with a higher degree of knowledge conflicts.
Abstract:In this paper, we explore zero- and few-shot generalization for fact verification (FV), which aims to generalize the FV model trained on well-resourced domains (e.g., Wikipedia) to low-resourced domains that lack human annotations. To this end, we first construct a benchmark dataset collection which contains 11 FV datasets representing 6 domains. We conduct an empirical analysis of generalization across these FV datasets, finding that current models generalize poorly. Our analysis reveals that several factors affect generalization, including dataset size, length of evidence, and the type of claims. Finally, we show that two directions of work improve generalization: 1) incorporating domain knowledge via pretraining on specialized domains, and 2) automatically generating training data via claim generation.
Abstract:Ergonomic efficiency is essential to the mass and prolonged adoption of VR/AR experiences. While VR/AR head-mounted displays unlock users' natural wide-range head movements during viewing, their neck muscle comfort is inevitably compromised by the added hardware weight. Unfortunately, little quantitative knowledge for understanding and addressing such an issue is available so far. Leveraging electromyography devices, we measure, model, and predict VR users' neck muscle contraction levels (MCL) while they move their heads to interact with the virtual environment. Specifically, by learning from collected physiological data, we develop a bio-physically inspired computational model to predict neck MCL under diverse head kinematic states. Beyond quantifying the cumulative MCL of completed head movements, our model can also predict potential MCL requirements with target head poses only. A series of objective evaluations and user studies demonstrate its prediction accuracy and generality, as well as its ability in reducing users' neck discomfort by optimizing the layout of visual targets. We hope this research will motivate new ergonomic-centered designs for VR/AR and interactive graphics applications. Source code is released at: https://github.com/NYU-ICL/xr-ergonomics-neck-comfort.
Abstract:Recently, commonsense reasoning in text generation has attracted much attention. Generative commonsense reasoning is the task that requires machines, given a group of keywords, to compose a single coherent sentence with commonsense plausibility. While existing datasets targeting generative commonsense reasoning focus on everyday scenarios, it is unclear how well machines reason under specific geographical and temporal contexts. We formalize this challenging task as SituatedGen, where machines with commonsense should generate a pair of contrastive sentences given a group of keywords including geographical or temporal entities. We introduce a corresponding English dataset consisting of 8,268 contrastive sentence pairs, which are built upon several existing commonsense reasoning benchmarks with minimal manual labor. Experiments show that state-of-the-art generative language models struggle to generate sentences with commonsense plausibility and still lag far behind human performance. Our dataset is publicly available at https://github.com/yunx-z/situated_gen.
Abstract:While tremendous advances in visual and auditory realism have been made for virtual and augmented reality (VR/AR), introducing a plausible sense of physicality into the virtual world remains challenging. Closing the gap between real-world physicality and immersive virtual experience requires a closed interaction loop: applying user-exerted physical forces to the virtual environment and generating haptic sensations back to the users. However, existing VR/AR solutions either completely ignore the force inputs from the users or rely on obtrusive sensing devices that compromise user experience. By identifying users' muscle activation patterns while engaging in VR/AR, we design a learning-based neural interface for natural and intuitive force inputs. Specifically, we show that lightweight electromyography sensors, resting non-invasively on users' forearm skin, inform and establish a robust understanding of their complex hand activities. Fuelled by a neural-network-based model, our interface can decode finger-wise forces in real-time with 3.3% mean error, and generalize to new users with little calibration. Through an interactive psychophysical study, we show that human perception of virtual objects' physical properties, such as stiffness, can be significantly enhanced by our interface. We further demonstrate that our interface enables ubiquitous control via finger tapping. Ultimately, we envision our findings to push forward research towards more realistic physicality in future VR/AR.
Abstract:Chinese character riddle is a challenging riddle game which takes a single character as the solution. The riddle describes the pronunciation, shape and meaning of the solution character with rhetoric techniques. In this paper, we propose a Chinese character riddle dataset covering the majority of common simplified Chinese characters by crawling riddles from the Web and generating brand new ones. In the generation stage, we provide the Chinese phonetic alphabet, decomposition and explanation of the solution character for the generation model and get multiple riddle descriptions for each tested character. Then the generated riddles are manually filtered and the final dataset, CC-Riddle is composed of both human-written riddles and filtered generated riddles. Furthermore, we build a character riddle QA system based on our dataset and find that the existing models struggle to solve such tricky questions. CC-Riddle is now publicly available.
Abstract:Recent advances in computationally efficient non-myopic Bayesian optimization (BO) improve query efficiency over traditional myopic methods like expected improvement while only modestly increasing computational cost. These advances have been largely limited, however, to unconstrained optimization. For constrained optimization, the few existing non-myopic BO methods require heavy computation. For instance, one existing non-myopic constrained BO method [Lam and Willcox, 2017] relies on computationally expensive unreliable brute-force derivative-free optimization of a Monte Carlo rollout acquisition function. Methods that use the reparameterization trick for more efficient derivative-based optimization of non-myopic acquisition functions in the unconstrained setting, like sample average approximation and infinitesimal perturbation analysis, do not extend: constraints introduce discontinuities in the sampled acquisition function surface that hinder its optimization. Moreover, we argue here that being non-myopic is even more important in constrained problems because fear of violating constraints pushes myopic methods away from sampling the boundary between feasible and infeasible regions, slowing the discovery of optimal solutions with tight constraints. In this paper, we propose a computationally efficient two-step lookahead constrained Bayesian optimization acquisition function (2-OPT-C) supporting both sequential and batch settings. To enable fast acquisition function optimization, we develop a novel likelihood-ratio-based unbiased estimator of the gradient of the two-step optimal acquisition function that does not use the reparameterization trick. In numerical experiments, 2-OPT-C typically improves query efficiency by 2x or more over previous methods, and in some cases by 10x or more.