Abstract:Neural image representations have recently emerged as a promising technique for storing, streaming, and rendering visual data. Coupled with learning-based workflows, these novel representations have demonstrated remarkable visual fidelity and memory efficiency. However, existing neural image representations often rely on explicit uniform data structures without content adaptivity or computation-intensive implicit models, limiting their adoption in real-time graphics applications. Inspired by recent advances in radiance field rendering, we propose Image-GS, a content-adaptive image representation. Using anisotropic 2D Gaussians as the basis, Image-GS shows high memory efficiency, supports fast random access, and offers a natural level of detail stack. Leveraging a tailored differentiable renderer, Image-GS fits a target image by adaptively allocating and progressively optimizing a set of 2D Gaussians. The generalizable efficiency and fidelity of Image-GS are validated against several recent neural image representations and industry-standard texture compressors on a diverse set of images. Notably, its memory and computation requirements solely depend on and linearly scale with the number of 2D Gaussians, providing flexible controls over the trade-off between visual fidelity and run-time efficiency. We hope this research offers insights for developing new applications that require adaptive quality and resource control, such as machine perception, asset streaming, and content generation.
Abstract:In the wake of many new ML-inspired approaches for reconstructing and representing high-quality 3D content, recent hybrid and explicitly learned representations exhibit promising performance and quality characteristics. However, their scaling to higher dimensions is challenging, e.g. when accounting for dynamic content with respect to additional parameters such as material properties, illumination, or time. In this paper, we tackle these challenges for an explicit representations based on Gaussian mixture models. With our solutions, we arrive at efficient fitting of compact N-dimensional Gaussian mixtures and enable efficient evaluation at render time: For fast fitting and evaluation, we introduce a high-dimensional culling scheme that efficiently bounds N-D Gaussians, inspired by Locality Sensitive Hashing. For adaptive refinement yet compact representation, we introduce a loss-adaptive density control scheme that incrementally guides the use of additional capacity towards missing details. With these tools we can for the first time represent complex appearance that depends on many input dimensions beyond position or viewing angle within a compact, explicit representation optimized in minutes and rendered in milliseconds.
Abstract:We propose NeuMIP, a neural method for representing and rendering a variety of material appearances at different scales. Classical prefiltering (mipmapping) methods work well on simple material properties such as diffuse color, but fail to generalize to normals, self-shadowing, fibers or more complex microstructures and reflectances. In this work, we generalize traditional mipmap pyramids to pyramids of neural textures, combined with a fully connected network. We also introduce neural offsets, a novel method which allows rendering materials with intricate parallax effects without any tessellation. This generalizes classical parallax mapping, but is trained without supervision by any explicit heightfield. Neural materials within our system support a 7-dimensional query, including position, incoming and outgoing direction, and the desired filter kernel size. The materials have small storage (on the order of standard mipmapping except with more texture channels), and can be integrated within common Monte-Carlo path tracing systems. We demonstrate our method on a variety of materials, resulting in complex appearance across levels of detail, with accurate parallax, self-shadowing, and other effects.
Abstract:Although Monte Carlo path tracing is a simple and effective algorithm to synthesize photo-realistic images, it is often very slow to converge to noise-free results when involving complex global illumination. One of the most successful variance-reduction techniques is path guiding, which can learn better distributions for importance sampling to reduce pixel noise. However, previous methods require a large number of path samples to achieve reliable path guiding. We present a novel neural path guiding approach that can reconstruct high-quality sampling distributions for path guiding from a sparse set of samples, using an offline trained neural network. We leverage photons traced from light sources as the input for sampling density reconstruction, which is highly effective for challenging scenes with strong global illumination. To fully make use of our deep neural network, we partition the scene space into an adaptive hierarchical grid, in which we apply our network to reconstruct high-quality sampling distributions for any local region in the scene. This allows for highly efficient path guiding for any path bounce at any location in path tracing. We demonstrate that our photon-driven neural path guiding method can generalize well on diverse challenging testing scenes that are not seen in training. Our approach achieves significantly better rendering results of testing scenes than previous state-of-the-art path guiding methods.