Abstract:Facial expression recognition is a challenging classification task with broad application prospects in the field of human - computer interaction. This paper aims to introduce the methods of our upcoming 8th Affective Behavior Analysis in the Wild (ABAW) competition to be held at CVPR2025. To address issues such as low recognition accuracy caused by subtle expression changes and multi - scales in facial expression recognition in videos, we propose global channel - spatial attention and median - enhanced spatial - channel attention to strengthen feature processing for speech and images respectively. Secondly, to fully utilize the complementarity between the speech and facial expression modalities, a speech - and - facial - expression key - frame alignment technique is adopted to calculate the weights of speech and facial expressions. These weights are input into the feature fusion layer for multi - scale dilated fusion, which effectively improves the recognition rate of facial expression recognition. In the facial expression recognition task of the 6th ABAW competition, our method achieved excellent results on the official validation set, which fully demonstrates the effectiveness and competitiveness of the proposed method.
Abstract:In this report, we present our solution for the Action Unit (AU) Detection Challenge, in 8th Competition on Affective Behavior Analysis in-the-wild. In order to achieve robust and accurate classification of facial action unit in the wild environment, we introduce an innovative method that leverages audio-visual multimodal data. Our method employs ConvNeXt as the image encoder and uses Whisper to extract Mel spectrogram features. For these features, we utilize a Transformer encoder-based feature fusion module to integrate the affective information embedded in audio and image features. This ensures the provision of rich high-dimensional feature representations for the subsequent multilayer perceptron (MLP) trained on the Aff-Wild2 dataset, enhancing the accuracy of AU detection.
Abstract:Emotional Mimicry Intensity (EMI) estimation serves as a critical technology for understanding human social behavior and enhancing human-computer interaction experiences, where the core challenge lies in dynamic correlation modeling and robust fusion of multimodal temporal signals. To address the limitations of existing methods in insufficient exploitation of modal synergistic effects, noise sensitivity, and limited fine-grained alignment capabilities, this paper proposes a dual-stage cross-modal alignment framework. First, we construct vision-text and audio-text contrastive learning networks based on an improved CLIP architecture, achieving preliminary alignment in the feature space through modality-decoupled pre-training. Subsequently, we design a temporal-aware dynamic fusion module that combines Temporal Convolutional Networks (TCN) and gated bidirectional LSTM to respectively capture the macro-evolution patterns of facial expressions and local dynamics of acoustic features. Innovatively, we introduce a quality-guided modality fusion strategy that enables modality compensation under occlusion and noisy scenarios through differentiable weight allocation. Experimental results on the Hume-Vidmimic2 dataset demonstrate that our method achieves an average Pearson correlation coefficient of 0.35 across six emotion dimensions, outperforming the best baseline by 40\%. Ablation studies further validate the effectiveness of the dual-stage training strategy and dynamic fusion mechanism, providing a novel technical pathway for fine-grained emotion analysis in open environments.
Abstract:This paper presents our method for the estimation of valence-arousal (VA) in the 8th Affective Behavior Analysis in-the-Wild (ABAW) competition. Our approach integrates visual and audio information through a multimodal framework. The visual branch uses a pre-trained ResNet model to extract spatial features from facial images. The audio branches employ pre-trained VGG models to extract VGGish and LogMel features from speech signals. These features undergo temporal modeling using Temporal Convolutional Networks (TCNs). We then apply cross-modal attention mechanisms, where visual features interact with audio features through query-key-value attention structures. Finally, the features are concatenated and passed through a regression layer to predict valence and arousal. Our method achieves competitive performance on the Aff-Wild2 dataset, demonstrating effective multimodal fusion for VA estimation in-the-wild.
Abstract:Motion-to-music and music-to-motion have been studied separately, each attracting substantial research interest within their respective domains. The interaction between human motion and music is a reflection of advanced human intelligence, and establishing a unified relationship between them is particularly important. However, to date, there has been no work that considers them jointly to explore the modality alignment within. To bridge this gap, we propose a novel framework, termed MoMu-Diffusion, for long-term and synchronous motion-music generation. Firstly, to mitigate the huge computational costs raised by long sequences, we propose a novel Bidirectional Contrastive Rhythmic Variational Auto-Encoder (BiCoR-VAE) that extracts the modality-aligned latent representations for both motion and music inputs. Subsequently, leveraging the aligned latent spaces, we introduce a multi-modal Transformer-based diffusion model and a cross-guidance sampling strategy to enable various generation tasks, including cross-modal, multi-modal, and variable-length generation. Extensive experiments demonstrate that MoMu-Diffusion surpasses recent state-of-the-art methods both qualitatively and quantitatively, and can synthesize realistic, diverse, long-term, and beat-matched music or motion sequences. The generated samples and codes are available at https://momu-diffusion.github.io/
Abstract:Text-to-song (TTSong) is a music generation task that synthesizes accompanied singing voices. Current TTSong methods, inherited from singing voice synthesis (SVS), require melody-related information that can sometimes be impractical, such as music scores or MIDI sequences. We present MelodyLM, the first TTSong model that generates high-quality song pieces with fully text-controlled melodies, achieving minimal user requirements and maximum control flexibility. MelodyLM explicitly models MIDI as the intermediate melody-related feature and sequentially generates vocal tracks in a language model manner, conditioned on textual and vocal prompts. The accompaniment music is subsequently synthesized by a latent diffusion model with hybrid conditioning for temporal alignment. With minimal requirements, users only need to input lyrics and a reference voice to synthesize a song sample. For full control, just input textual prompts or even directly input MIDI. Experimental results indicate that MelodyLM achieves superior performance in terms of both objective and subjective metrics. Audio samples are available at https://melodylm666.github.io.
Abstract:Speech-to-singing voice conversion (STS) task always suffers from data scarcity, because it requires paired speech and singing data. Compounding this issue are the challenges of content-pitch alignment and the suboptimal quality of generated outputs, presenting significant hurdles in STS research. This paper presents SVPT, an STS approach boosted by a self-supervised singing voice pre-training model. We leverage spoken language model techniques to tackle the rhythm alignment problem and the in-context learning capability to achieve zero-shot conversion. We adopt discrete-unit random resampling and pitch corruption strategies, enabling training with unpaired singing data and thus mitigating the issue of data scarcity. SVPT also serves as an effective backbone for singing voice synthesis (SVS), offering insights into scaling up SVS models. Experimental results indicate that SVPT delivers notable improvements in both STS and SVS endeavors. Audio samples are available at https://speech2sing.github.io.
Abstract:Video-to-audio (V2A) generation aims to synthesize content-matching audio from silent video, and it remains challenging to build V2A models with high generation quality, efficiency, and visual-audio temporal synchrony. We propose Frieren, a V2A model based on rectified flow matching. Frieren regresses the conditional transport vector field from noise to spectrogram latent with straight paths and conducts sampling by solving ODE, outperforming autoregressive and score-based models in terms of audio quality. By employing a non-autoregressive vector field estimator based on a feed-forward transformer and channel-level cross-modal feature fusion with strong temporal alignment, our model generates audio that is highly synchronized with the input video. Furthermore, through reflow and one-step distillation with guided vector field, our model can generate decent audio in a few, or even only one sampling step. Experiments indicate that Frieren achieves state-of-the-art performance in both generation quality and temporal alignment on VGGSound, with alignment accuracy reaching 97.22%, and 6.2% improvement in inception score over the strong diffusion-based baseline. Audio samples are available at http://frieren-v2a.github.io .
Abstract:Note-level Automatic Singing Voice Transcription (AST) converts singing recordings into note sequences, facilitating the automatic annotation of singing datasets for Singing Voice Synthesis (SVS) applications. Current AST methods, however, struggle with accuracy and robustness when used for practical annotation. This paper presents ROSVOT, the first robust AST model that serves SVS, incorporating a multi-scale framework that effectively captures coarse-grained note information and ensures fine-grained frame-level segmentation, coupled with an attention-based pitch decoder for reliable pitch prediction. We also established a comprehensive annotation-and-training pipeline for SVS to test the model in real-world settings. Experimental findings reveal that ROSVOT achieves state-of-the-art transcription accuracy with either clean or noisy inputs. Moreover, when trained on enlarged, automatically annotated datasets, the SVS model outperforms its baseline, affirming the capability for practical application. Audio samples are available at https://rosvot.github.io.
Abstract:A song is a combination of singing voice and accompaniment. However, existing works focus on singing voice synthesis and music generation independently. Little attention was paid to explore song synthesis. In this work, we propose a novel task called text-to-song synthesis which incorporating both vocals and accompaniments generation. We develop Melodist, a two-stage text-to-song method that consists of singing voice synthesis (SVS) and vocal-to-accompaniment (V2A) synthesis. Melodist leverages tri-tower contrastive pretraining to learn more effective text representation for controllable V2A synthesis. A Chinese song dataset mined from a music website is built up to alleviate data scarcity for our research. The evaluation results on our dataset demonstrate that Melodist can synthesize songs with comparable quality and style consistency. Audio samples can be found in https://text2songMelodist.github.io/Sample/.