Abstract:Motion-to-music and music-to-motion have been studied separately, each attracting substantial research interest within their respective domains. The interaction between human motion and music is a reflection of advanced human intelligence, and establishing a unified relationship between them is particularly important. However, to date, there has been no work that considers them jointly to explore the modality alignment within. To bridge this gap, we propose a novel framework, termed MoMu-Diffusion, for long-term and synchronous motion-music generation. Firstly, to mitigate the huge computational costs raised by long sequences, we propose a novel Bidirectional Contrastive Rhythmic Variational Auto-Encoder (BiCoR-VAE) that extracts the modality-aligned latent representations for both motion and music inputs. Subsequently, leveraging the aligned latent spaces, we introduce a multi-modal Transformer-based diffusion model and a cross-guidance sampling strategy to enable various generation tasks, including cross-modal, multi-modal, and variable-length generation. Extensive experiments demonstrate that MoMu-Diffusion surpasses recent state-of-the-art methods both qualitatively and quantitatively, and can synthesize realistic, diverse, long-term, and beat-matched music or motion sequences. The generated samples and codes are available at https://momu-diffusion.github.io/
Abstract:Text-to-song (TTSong) is a music generation task that synthesizes accompanied singing voices. Current TTSong methods, inherited from singing voice synthesis (SVS), require melody-related information that can sometimes be impractical, such as music scores or MIDI sequences. We present MelodyLM, the first TTSong model that generates high-quality song pieces with fully text-controlled melodies, achieving minimal user requirements and maximum control flexibility. MelodyLM explicitly models MIDI as the intermediate melody-related feature and sequentially generates vocal tracks in a language model manner, conditioned on textual and vocal prompts. The accompaniment music is subsequently synthesized by a latent diffusion model with hybrid conditioning for temporal alignment. With minimal requirements, users only need to input lyrics and a reference voice to synthesize a song sample. For full control, just input textual prompts or even directly input MIDI. Experimental results indicate that MelodyLM achieves superior performance in terms of both objective and subjective metrics. Audio samples are available at https://melodylm666.github.io.
Abstract:Speech-to-singing voice conversion (STS) task always suffers from data scarcity, because it requires paired speech and singing data. Compounding this issue are the challenges of content-pitch alignment and the suboptimal quality of generated outputs, presenting significant hurdles in STS research. This paper presents SVPT, an STS approach boosted by a self-supervised singing voice pre-training model. We leverage spoken language model techniques to tackle the rhythm alignment problem and the in-context learning capability to achieve zero-shot conversion. We adopt discrete-unit random resampling and pitch corruption strategies, enabling training with unpaired singing data and thus mitigating the issue of data scarcity. SVPT also serves as an effective backbone for singing voice synthesis (SVS), offering insights into scaling up SVS models. Experimental results indicate that SVPT delivers notable improvements in both STS and SVS endeavors. Audio samples are available at https://speech2sing.github.io.
Abstract:Video-to-audio (V2A) generation aims to synthesize content-matching audio from silent video, and it remains challenging to build V2A models with high generation quality, efficiency, and visual-audio temporal synchrony. We propose Frieren, a V2A model based on rectified flow matching. Frieren regresses the conditional transport vector field from noise to spectrogram latent with straight paths and conducts sampling by solving ODE, outperforming autoregressive and score-based models in terms of audio quality. By employing a non-autoregressive vector field estimator based on a feed-forward transformer and channel-level cross-modal feature fusion with strong temporal alignment, our model generates audio that is highly synchronized with the input video. Furthermore, through reflow and one-step distillation with guided vector field, our model can generate decent audio in a few, or even only one sampling step. Experiments indicate that Frieren achieves state-of-the-art performance in both generation quality and temporal alignment on VGGSound, with alignment accuracy reaching 97.22%, and 6.2% improvement in inception score over the strong diffusion-based baseline. Audio samples are available at http://frieren-v2a.github.io .
Abstract:Note-level Automatic Singing Voice Transcription (AST) converts singing recordings into note sequences, facilitating the automatic annotation of singing datasets for Singing Voice Synthesis (SVS) applications. Current AST methods, however, struggle with accuracy and robustness when used for practical annotation. This paper presents ROSVOT, the first robust AST model that serves SVS, incorporating a multi-scale framework that effectively captures coarse-grained note information and ensures fine-grained frame-level segmentation, coupled with an attention-based pitch decoder for reliable pitch prediction. We also established a comprehensive annotation-and-training pipeline for SVS to test the model in real-world settings. Experimental findings reveal that ROSVOT achieves state-of-the-art transcription accuracy with either clean or noisy inputs. Moreover, when trained on enlarged, automatically annotated datasets, the SVS model outperforms its baseline, affirming the capability for practical application. Audio samples are available at https://rosvot.github.io.
Abstract:A song is a combination of singing voice and accompaniment. However, existing works focus on singing voice synthesis and music generation independently. Little attention was paid to explore song synthesis. In this work, we propose a novel task called text-to-song synthesis which incorporating both vocals and accompaniments generation. We develop Melodist, a two-stage text-to-song method that consists of singing voice synthesis (SVS) and vocal-to-accompaniment (V2A) synthesis. Melodist leverages tri-tower contrastive pretraining to learn more effective text representation for controllable V2A synthesis. A Chinese song dataset mined from a music website is built up to alleviate data scarcity for our research. The evaluation results on our dataset demonstrate that Melodist can synthesize songs with comparable quality and style consistency. Audio samples can be found in https://text2songMelodist.github.io/Sample/.
Abstract:This paper presents our approach for the VA (Valence-Arousal) estimation task in the ABAW6 competition. We devised a comprehensive model by preprocessing video frames and audio segments to extract visual and audio features. Through the utilization of Temporal Convolutional Network (TCN) modules, we effectively captured the temporal and spatial correlations between these features. Subsequently, we employed a Transformer encoder structure to learn long-range dependencies, thereby enhancing the model's performance and generalization ability. Our method leverages a multimodal data fusion approach, integrating pre-trained audio and video backbones for feature extraction, followed by TCN-based spatiotemporal encoding and Transformer-based temporal information capture. Experimental results demonstrate the effectiveness of our approach, achieving competitive performance in VA estimation on the AffWild2 dataset.
Abstract:Leveraging the synergy of both audio data and visual data is essential for understanding human emotions and behaviors, especially in in-the-wild setting. Traditional methods for integrating such multimodal information often stumble, leading to less-than-ideal outcomes in the task of facial action unit detection. To overcome these shortcomings, we propose a novel approach utilizing audio-visual multimodal data. This method enhances audio feature extraction by leveraging Mel Frequency Cepstral Coefficients (MFCC) and Log-Mel spectrogram features alongside a pre-trained VGGish network. Moreover, this paper adaptively captures fusion features across modalities by modeling the temporal relationships, and ultilizes a pre-trained GPT-2 model for sophisticated context-aware fusion of multimodal information. Our method notably improves the accuracy of AU detection by understanding the temporal and contextual nuances of the data, showcasing significant advancements in the comprehension of intricate scenarios. These findings underscore the potential of integrating temporal dynamics and contextual interpretation, paving the way for future research endeavors.
Abstract:Facial Expression Recognition (FER) plays a crucial role in computer vision and finds extensive applications across various fields. This paper aims to present our approach for the upcoming 6th Affective Behavior Analysis in-the-Wild (ABAW) competition, scheduled to be held at CVPR2024. In the facial expression recognition task, The limited size of the FER dataset poses a challenge to the expression recognition model's generalization ability, resulting in subpar recognition performance. To address this problem, we employ a semi-supervised learning technique to generate expression category pseudo-labels for unlabeled face data. At the same time, we uniformly sampled the labeled facial expression samples and implemented a debiased feedback learning strategy to address the problem of category imbalance in the dataset and the possible data bias in semi-supervised learning. Moreover, to further compensate for the limitation and bias of features obtained only from static images, we introduced a Temporal Encoder to learn and capture temporal relationships between neighbouring expression image features. In the 6th ABAW competition, our method achieved outstanding results on the official validation set, a result that fully confirms the effectiveness and competitiveness of our proposed method.
Abstract:Recent singing-voice-synthesis (SVS) methods have achieved remarkable audio quality and naturalness, yet they lack the capability to control the style attributes of the synthesized singing explicitly. We propose Prompt-Singer, the first SVS method that enables attribute controlling on singer gender, vocal range and volume with natural language. We adopt a model architecture based on a decoder-only transformer with a multi-scale hierarchy, and design a range-melody decoupled pitch representation that enables text-conditioned vocal range control while keeping melodic accuracy. Furthermore, we explore various experiment settings, including different types of text representations, text encoder fine-tuning, and introducing speech data to alleviate data scarcity, aiming to facilitate further research. Experiments show that our model achieves favorable controlling ability and audio quality. Audio samples are available at http://prompt-singer.github.io .