Abstract:In this system, we discuss methods to stylize a scene of 3D primitive objects into a higher fidelity 3D scene using novel 3D representations like NeRFs and 3D Gaussian Splatting. Our approach leverages existing image stylization systems and image-to-3D generative models to create a pipeline that iteratively stylizes and composites 3D objects into scenes. We show our results on adding generated objects into a scene and discuss limitations.
Abstract:In the field of spatial computing, one of the most essential tasks is the pose estimation of 3D objects. While rigid transformations of arbitrary 3D objects are relatively hard to detect due to varying environment introducing factors like insufficient lighting or even occlusion, objects with pre-defined shapes are often easy to track, leveraging geometric constraints. Curved images, with flexible dimensions but a confined shape, are essential shapes often targeted in 3D tracking. Traditionally, proprietary algorithms often require specific curvature measures as the input along with the original flattened images to enable pose estimation for a single image target. In this paper, we propose a pipeline that can detect several logo images simultaneously and only requires the original images as the input, unlocking more effects in downstream fields such as Augmented Reality (AR).
Abstract:Multi-label feature selection serves as an effective mean for dealing with high-dimensional multi-label data. To achieve satisfactory performance, existing methods for multi-label feature selection often require the centralization of substantial data from multiple sources. However, in Federated setting, centralizing data from all sources and merging them into a single dataset is not feasible. To tackle this issue, in this paper, we study a challenging problem of causal multi-label feature selection in federated setting and propose a Federated Causal Multi-label Feature Selection (FedCMFS) algorithm with three novel subroutines. Specifically, FedCMFS first uses the FedCFL subroutine that considers the correlations among label-label, label-feature, and feature-feature to learn the relevant features (candidate parents and children) of each class label while preserving data privacy without centralizing data. Second, FedCMFS employs the FedCFR subroutine to selectively recover the missed true relevant features. Finally, FedCMFS utilizes the FedCFC subroutine to remove false relevant features. The extensive experiments on 8 datasets have shown that FedCMFS is effect for causal multi-label feature selection in federated setting.