Abstract:The influence of contextual input on the behavior of large language models (LLMs) has prompted the development of context attribution methods that aim to quantify each context span's effect on an LLM's generations. The leave-one-out (LOO) error, which measures the change in the likelihood of the LLM's response when a given span of the context is removed, provides a principled way to perform context attribution, but can be prohibitively expensive to compute for large models. In this work, we introduce AttriBoT, a series of novel techniques for efficiently computing an approximation of the LOO error for context attribution. Specifically, AttriBoT uses cached activations to avoid redundant operations, performs hierarchical attribution to reduce computation, and emulates the behavior of large target models with smaller proxy models. Taken together, AttriBoT can provide a >300x speedup while remaining more faithful to a target model's LOO error than prior context attribution methods. This stark increase in performance makes computing context attributions for a given response 30x faster than generating the response itself, empowering real-world applications that require computing attributions at scale. We release a user-friendly and efficient implementation of AttriBoT to enable efficient LLM interpretability as well as encourage future development of efficient context attribution methods.
Abstract:Large language models (LLMs) demonstrate impressive zero-shot and few-shot reasoning capabilities. Some propose that such capabilities can be improved through self-reflection, i.e., letting LLMs reflect on their own output to identify and correct mistakes in the initial responses. However, despite some evidence showing the benefits of self-reflection, recent studies offer mixed results. Here, we aim to reconcile these conflicting findings by first demonstrating that the outcome of self-reflection is sensitive to prompt wording; e.g., LLMs are more likely to conclude that it has made a mistake when explicitly prompted to find mistakes. Consequently, idiosyncrasies in reflection prompts may lead LLMs to change correct responses unnecessarily. We show that most prompts used in the self-reflection literature are prone to this bias. We then propose different ways of constructing prompts that are conservative in identifying mistakes and show that self-reflection using such prompts results in higher accuracy. Our findings highlight the importance of prompt engineering in self-reflection tasks. We release our code at https://github.com/Michael98Liu/mixture-of-prompts.
Abstract:Recent progress in visual generative models enables the generation of high-quality images. To prevent the misuse of generated images, it is important to identify the origin model that generates them. In this work, we study the origin attribution of generated images in a practical setting where only a few images generated by a source model are available and the source model cannot be accessed. The goal is to check if a given image is generated by the source model. We first formulate this problem as a few-shot one-class classification task. To solve the task, we propose OCC-CLIP, a CLIP-based framework for few-shot one-class classification, enabling the identification of an image's source model, even among multiple candidates. Extensive experiments corresponding to various generative models verify the effectiveness of our OCC-CLIP framework. Furthermore, an experiment based on the recently released DALL-E 3 API verifies the real-world applicability of our solution.
Abstract:Different from traditional task-specific vision models, recent large VLMs can readily adapt to different vision tasks by simply using different textual instructions, i.e., prompts. However, a well-known concern about traditional task-specific vision models is that they can be misled by imperceptible adversarial perturbations. Furthermore, the concern is exacerbated by the phenomenon that the same adversarial perturbations can fool different task-specific models. Given that VLMs rely on prompts to adapt to different tasks, an intriguing question emerges: Can a single adversarial image mislead all predictions of VLMs when a thousand different prompts are given? This question essentially introduces a novel perspective on adversarial transferability: cross-prompt adversarial transferability. In this work, we propose the Cross-Prompt Attack (CroPA). This proposed method updates the visual adversarial perturbation with learnable prompts, which are designed to counteract the misleading effects of the adversarial image. By doing this, CroPA significantly improves the transferability of adversarial examples across prompts. Extensive experiments are conducted to verify the strong cross-prompt adversarial transferability of CroPA with prevalent VLMs including Flamingo, BLIP-2, and InstructBLIP in various different tasks. Our source code is available at \url{https://github.com/Haochen-Luo/CroPA}.
Abstract:The goal of automated feature generation is to liberate machine learning experts from the laborious task of manual feature generation, which is crucial for improving the learning performance of tabular data. The major challenge in automated feature generation is to efficiently and accurately identify useful features from a vast pool of candidate features. In this paper, we present OpenFE, an automated feature generation tool that provides competitive results against machine learning experts. OpenFE achieves efficiency and accuracy with two components: 1) a novel feature boosting method for accurately estimating the incremental performance of candidate features. 2) a feature-scoring framework for retrieving effective features from a large number of candidates through successive featurewise halving and feature importance attribution. Extensive experiments on seven benchmark datasets show that OpenFE outperforms existing baseline methods. We further evaluate OpenFE in two famous Kaggle competitions with thousands of data science teams participating. In one of the competitions, features generated by OpenFE with a simple baseline model can beat 99.3\% data science teams. In addition to the empirical results, we provide a theoretical perspective to show that feature generation is beneficial in a simple yet representative setting. The code is available at https://github.com/ZhangTP1996/OpenFE.