Abstract:Scaling laws in language modeling traditionally quantify training loss as a function of dataset size and model parameters, providing compute-optimal estimates but often neglecting the impact of data quality on model generalization. In this paper, we extend the conventional understanding of scaling law by offering a microscopic view of data quality within the original formulation -- effective training tokens -- which we posit to be a critical determinant of performance for parameter-constrained language models. Specifically, we formulate the proposed term of effective training tokens to be a combination of two readily-computed indicators of text: (i) text diversity and (ii) syntheticity as measured by a teacher model. We pretrained over $200$ models of 25M to 1.5B parameters on a diverse set of sampled, synthetic data, and estimated the constants that relate text quality, model size, training tokens, and eight reasoning task accuracy scores. We demonstrated the estimated constants yield +0.83 Pearson correlation with true accuracies, and analyzed it in scenarios involving widely-used data techniques such as data sampling and synthesis which aim to improve data quality.
Abstract:Identifying beneficial tasks to transfer from is a critical step toward successful intermediate-task transfer learning. In this work, we experiment with 130 source-target task combinations and demonstrate that the transfer performance exhibits severe variance across different source tasks and training seeds, highlighting the crucial role of intermediate-task selection in a broader context. We compare four representative task selection methods in a unified setup, focusing on their effectiveness and consistency. Compared to embedding-free methods and text embeddings, task embeddings constructed from fine-tuned weights can better estimate task transferability by improving task prediction scores from 2.59% to 3.96%. Despite their strong performance, we observe that the task embeddings do not consistently demonstrate superiority for tasks requiring reasoning abilities. Furthermore, we introduce a novel method that measures pairwise token similarity using maximum inner product search, leading to the highest performance in task prediction. Our findings suggest that token-wise similarity is better predictive for predicting transferability compared to averaging weights.
Abstract:Nigerian Pidgin is an English-derived contact language and is traditionally an oral language, spoken by approximately 100 million people. No orthographic standard has yet been adopted, and thus the few available Pidgin datasets that exist are characterised by noise in the form of orthographic variations. This contributes to under-performance of models in critical NLP tasks. The current work is the first to describe various types of orthographic variations commonly found in Nigerian Pidgin texts, and model this orthographic variation. The variations identified in the dataset form the basis of a phonetic-theoretic framework for word editing, which is used to generate orthographic variations to augment training data. We test the effect of this data augmentation on two critical NLP tasks: machine translation and sentiment analysis. The proposed variation generation framework augments the training data with new orthographic variants which are relevant for the test set but did not occur in the training set originally. Our results demonstrate the positive effect of augmenting the training data with a combination of real texts from other corpora as well as synthesized orthographic variation, resulting in performance improvements of 2.1 points in sentiment analysis and 1.4 BLEU points in translation to English.
Abstract:Distributional shift is a central challenge in the deployment of machine learning models as they can be ill-equipped for real-world data. This is particularly evident in text-to-audio generation where the encoded representations are easily undermined by unseen prompts, which leads to the degradation of generated audio -- the limited set of the text-audio pairs remains inadequate for conditional audio generation in the wild as user prompts are under-specified. In particular, we observe a consistent audio quality degradation in generated audio samples with user prompts, as opposed to training set prompts. To this end, we present a retrieval-based in-context prompt editing framework that leverages the training captions as demonstrative exemplars to revisit the user prompts. We show that the framework enhanced the audio quality across the set of collected user prompts, which were edited with reference to the training captions as exemplars.
Abstract:Text-to-audio generation (TTA) produces audio from a text description, learning from pairs of audio samples and hand-annotated text. However, commercializing audio generation is challenging as user-input prompts are often under-specified when compared to text descriptions used to train TTA models. In this work, we treat TTA models as a ``blackbox'' and address the user prompt challenge with two key insights: (1) User prompts are generally under-specified, leading to a large alignment gap between user prompts and training prompts. (2) There is a distribution of audio descriptions for which TTA models are better at generating higher quality audio, which we refer to as ``audionese''. To this end, we rewrite prompts with instruction-tuned models and propose utilizing text-audio alignment as feedback signals via margin ranking learning for audio improvements. On both objective and subjective human evaluations, we observed marked improvements in both text-audio alignment and music audio quality.
Abstract:Knowing exactly how many data points need to be labeled to achieve a certain model performance is a hugely beneficial step towards reducing the overall budgets for annotation. It pertains to both active learning and traditional data annotation, and is particularly beneficial for low resource scenarios. Nevertheless, it remains a largely under-explored area of research in NLP. We therefore explored various techniques for estimating the training sample size necessary to achieve a targeted performance value. We derived a simple yet effective approach to predict the maximum achievable model performance based on small amount of training samples - which serves as an early indicator during data annotation for data quality and sample size determination. We performed ablation studies on four language understanding tasks, and showed that the proposed approach allows us to forecast model performance within a small margin of mean absolute error (~ 0.9%) with only 10% data.
Abstract:Developing effective spoken language processing systems for low-resource languages poses several challenges due to the lack of parallel data and limited resources for fine-tuning models. In this work, we target on improving upon both text classification and translation of Nigerian Pidgin (Naija) by collecting a large-scale parallel English-Pidgin corpus and further propose a framework of cross-lingual adaptive training that includes both continual and task adaptive training so as to adapt a base pre-trained model to low-resource languages. Our studies show that English pre-trained language models serve as a stronger prior than multilingual language models on English-Pidgin tasks with up to 2.38 BLEU improvements; and demonstrate that augmenting orthographic data and using task adaptive training with back-translation can have a significant impact on model performance.