Abstract:Implicit discourse relation recognition (IDRR) -- the task of identifying the implicit coherence relation between two text spans -- requires deep semantic understanding. Recent studies have shown that zero- or few-shot approaches significantly lag behind supervised models, but LLMs may be useful for synthetic data augmentation, where LLMs generate a second argument following a specified coherence relation. We applied this approach in a cross-domain setting, generating discourse continuations using unlabelled target-domain data to adapt a base model which was trained on source-domain labelled data. Evaluations conducted on a large-scale test set revealed that different variations of the approach did not result in any significant improvements. We conclude that LLMs often fail to generate useful samples for IDRR, and emphasize the importance of considering both statistical significance and comparability when evaluating IDRR models.
Abstract:It has been frequently observed that human speakers align their language use with each other during conversations. In this paper, we study empirically whether large language models (LLMs) exhibit the same behavior of conversational adaptation. We construct a corpus of conversations between LLMs and find that two LLM agents end up making more similar syntactic choices as conversations go on, confirming that modern LLMs adapt their language use to their conversational partners in at least a rudimentary way.
Abstract:Research in linguistics shows that non-verbal cues, such as gestures, play a crucial role in spoken discourse. For example, speakers perform hand gestures to indicate topic shifts, helping listeners identify transitions in discourse. In this work, we investigate whether the joint modeling of gestures using human motion sequences and language can improve spoken discourse modeling in language models. To integrate gestures into language models, we first encode 3D human motion sequences into discrete gesture tokens using a VQ-VAE. These gesture token embeddings are then aligned with text embeddings through feature alignment, mapping them into the text embedding space. To evaluate the gesture-aligned language model on spoken discourse, we construct text infilling tasks targeting three key discourse cues grounded in linguistic research: discourse connectives, stance markers, and quantifiers. Results show that incorporating gestures enhances marker prediction accuracy across the three tasks, highlighting the complementary information that gestures can offer in modeling spoken discourse. We view this work as an initial step toward leveraging non-verbal cues to advance spoken language modeling in language models.
Abstract:Large Language Models (LLMs) have demonstrated impressive potential in translating natural language (NL) instructions into program code. However, user instructions often contain inherent ambiguities, making it challenging for LLMs to generate code that accurately reflects the user's true intent. To address this challenge, researchers have proposed to produce multiple candidates of the program code and then rerank them to identify the best solution. In this paper, we propose CodeRSA, a novel code candidate reranking mechanism built upon the Rational Speech Act (RSA) framework, designed to guide LLMs toward more comprehensive pragmatic reasoning about user intent. We evaluate CodeRSA using one of the latest LLMs on a popular code generation dataset. Our experiment results show that CodeRSA consistently outperforms common baselines, surpasses the state-of-the-art approach in most cases, and demonstrates robust overall performance. These findings underscore the effectiveness of integrating pragmatic reasoning into code candidate reranking, offering a promising direction for enhancing code generation quality in LLMs.
Abstract:Post-hoc explanation methods for black-box models often struggle with faithfulness and human interpretability due to the lack of explainability in current neural models. Meanwhile, B-cos networks have been introduced to improve model explainability through architectural and computational adaptations, but their application has so far been limited to computer vision models and their associated training pipelines. In this work, we introduce B-cos LMs, i.e., B-cos networks empowered for NLP tasks. Our approach directly transforms pre-trained language models into B-cos LMs by combining B-cos conversion and task fine-tuning, improving efficiency compared to previous B-cos methods. Our automatic and human evaluation results demonstrate that B-cos LMs produce more faithful and human interpretable explanations than post hoc methods, while maintaining task performance comparable to conventional fine-tuning. Our in-depth analysis explores how B-cos LMs differ from conventionally fine-tuned models in their learning processes and explanation patterns. Finally, we provide practical guidelines for effectively building B-cos LMs based on our findings. Our code is available at https://anonymous.4open.science/r/bcos_lm.
Abstract:Transforming recorded videos into concise and accurate textual summaries is a growing challenge in multimodal learning. This paper introduces VISTA, a dataset specifically designed for video-to-text summarization in scientific domains. VISTA contains 18,599 recorded AI conference presentations paired with their corresponding paper abstracts. We benchmark the performance of state-of-the-art large models and apply a plan-based framework to better capture the structured nature of abstracts. Both human and automated evaluations confirm that explicit planning enhances summary quality and factual consistency. However, a considerable gap remains between models and human performance, highlighting the challenges of scientific video summarization.
Abstract:Interpreting implicit discourse relations involves complex reasoning, requiring the integration of semantic cues with background knowledge, as overt connectives like because or then are absent. These relations often allow multiple interpretations, best represented as distributions. In this study, we compare two established methods that crowdsource English implicit discourse relation annotation by connective insertion: a free-choice approach, which allows annotators to select any suitable connective, and a forced-choice approach, which asks them to select among a set of predefined options. Specifically, we re-annotate the whole DiscoGeM 1.0 corpus -- initially annotated with the free-choice method -- using the forced-choice approach. The free-choice approach allows for flexible and intuitive insertion of various connectives, which are context-dependent. Comparison among over 130,000 annotations, however, shows that the free-choice strategy produces less diverse annotations, often converging on common labels. Analysis of the results reveals the interplay between task design and the annotators' abilities to interpret and produce discourse relations.
Abstract:Non-verbal communication often comprises of semantically rich gestures that help convey the meaning of an utterance. Producing such semantic co-speech gestures has been a major challenge for the existing neural systems that can generate rhythmic beat gestures, but struggle to produce semantically meaningful gestures. Therefore, we present RAG-Gesture, a diffusion-based gesture generation approach that leverages Retrieval Augmented Generation (RAG) to produce natural-looking and semantically rich gestures. Our neuro-explicit gesture generation approach is designed to produce semantic gestures grounded in interpretable linguistic knowledge. We achieve this by using explicit domain knowledge to retrieve exemplar motions from a database of co-speech gestures. Once retrieved, we then inject these semantic exemplar gestures into our diffusion-based gesture generation pipeline using DDIM inversion and retrieval guidance at the inference time without any need of training. Further, we propose a control paradigm for guidance, that allows the users to modulate the amount of influence each retrieval insertion has over the generated sequence. Our comparative evaluations demonstrate the validity of our approach against recent gesture generation approaches. The reader is urged to explore the results on our project page.
Abstract:Despite significant advancements in natural language generation, controlling language models to produce texts with desired attributes remains a formidable challenge. In this work, we introduce RSA-Control, a training-free controllable text generation framework grounded in pragmatics. RSA-Control directs the generation process by recursively reasoning between imaginary speakers and listeners, enhancing the likelihood that target attributes are correctly interpreted by listeners amidst distractors. Additionally, we introduce a self-adjustable rationality parameter, which allows for automatic adjustment of control strength based on context. Our experiments, conducted with two task types and two types of language models, demonstrate that RSA-Control achieves strong attribute control while maintaining language fluency and content consistency. Our code is available at https://github.com/Ewanwong/RSA-Control.
Abstract:Diffusion models have recently achieved remarkable advancements in terms of image quality and fidelity to textual prompts. Concurrently, the safety of such generative models has become an area of growing concern. This work introduces a novel type of jailbreak, which triggers T2I models to generate the image with visual text, where the image and the text, although considered to be safe in isolation, combine to form unsafe content. To systematically explore this phenomenon, we propose a dataset to evaluate the current diffusion-based text-to-image (T2I) models under such jailbreak. We benchmark nine representative T2I models, including two close-source commercial models. Experimental results reveal a concerning tendency to produce unsafe content: all tested models suffer from such type of jailbreak, with rates of unsafe generation ranging from 8\% to 74\%. In real-world scenarios, various filters such as keyword blocklists, customized prompt filters, and NSFW image filters, are commonly employed to mitigate these risks. We evaluate the effectiveness of such filters against our jailbreak and found that, while current classifiers may be effective for single modality detection, they fail to work against our jailbreak. Our work provides a foundation for further development towards more secure and reliable T2I models.