Abstract:Self-supervised learning models have revolutionized the field of speech processing. However, the process of fine-tuning these models on downstream tasks requires substantial computational resources, particularly when dealing with multiple speech-processing tasks. In this paper, we explore the potential of adapter-based fine-tuning in developing a unified model capable of effectively handling multiple spoken language processing tasks. The tasks we investigate are Automatic Speech Recognition, Phoneme Recognition, Intent Classification, Slot Filling, and Spoken Emotion Recognition. We validate our approach through a series of experiments on the SUPERB benchmark, and our results indicate that adapter-based fine-tuning enables a single encoder-decoder model to perform multiple speech processing tasks with an average improvement of 18.4% across the five target tasks while staying efficient in terms of parameter updates.
Abstract:Machine learning models automatically learn discriminative features from the data, and are therefore susceptible to learn strongly-correlated biases, such as using protected attributes like gender and race. Most existing bias mitigation approaches aim to explicitly reduce the model's focus on these protected features. In this work, we propose to mitigate bias by explicitly guiding the model's focus towards task-relevant features using domain knowledge, and we hypothesize that this can indirectly reduce the dependence of the model on spurious correlations it learns from the data. We explore bias mitigation in facial expression recognition systems using facial Action Units (AUs) as the task-relevant feature. To this end, we introduce Feature-based Positive Matching Contrastive Loss which learns the distances between the positives of a sample based on the similarity between their corresponding AU embeddings. We compare our approach with representative baselines and show that incorporating task-relevant features via our method can improve model fairness at minimal cost to classification performance.
Abstract:Fine-grained classification involves dealing with datasets with larger number of classes with subtle differences between them. Guiding the model to focus on differentiating dimensions between these commonly confusable classes is key to improving performance on fine-grained tasks. In this work, we analyse the contrastive fine-tuning of pre-trained language models on two fine-grained text classification tasks, emotion classification and sentiment analysis. We adaptively embed class relationships into a contrastive objective function to help differently weigh the positives and negatives, and in particular, weighting closely confusable negatives more than less similar negative examples. We find that Label-aware Contrastive Loss outperforms previous contrastive methods, in the presence of larger number and/or more confusable classes, and helps models to produce output distributions that are more differentiated.
Abstract:Modern emotion recognition systems are trained to recognize only a small set of emotions, and hence fail to capture the broad spectrum of emotions people experience and express in daily life. In order to engage in more empathetic interactions, future AI has to perform \textit{fine-grained} emotion recognition, distinguishing between many more varied emotions. Here, we focus on improving fine-grained emotion recognition by introducing external knowledge into a pre-trained self-attention model. We propose Knowledge-Embedded Attention (KEA) to use knowledge from emotion lexicons to augment the contextual representations from pre-trained ELECTRA and BERT models. Our results and error analyses outperform previous models on several datasets, and is better able to differentiate closely-confusable emotions, such as afraid and terrified.
Abstract:Facial Expression Recognition is a commercially important application, but one common limitation is that applications often require making predictions on out-of-sample distributions, where target images may have very different properties from the images that the model was trained on. How well, or badly, do these models do on unseen target domains? In this paper, we provide a systematic evaluation of domain adaptation in facial expression recognition. Using state-of-the-art transfer learning techniques and six commonly-used facial expression datasets (three collected in the lab and three "in-the-wild"), we conduct extensive round-robin experiments to examine the classification accuracies for a state-of-the-art CNN model. We also perform multi-source experiments where we examine a model's ability to transfer from multiple source datasets, including (i) within-setting (e.g., lab to lab), (ii) cross-setting (e.g., in-the-wild to lab), (iii) mixed-setting (e.g., lab and wild to lab) transfer learning experiments. We find sobering results that the accuracy of transfer learning is not high, and varies idiosyncratically with the target dataset, and to a lesser extent the source dataset. Generally, the best settings for transfer include fine-tuning the weights of a pre-trained model, and we find that training with more datasets, regardless of setting, improves transfer performance. We end with a discussion of the need for more -- and regular -- systematic investigations into the generalizability of FER models, especially for deployed applications.
Abstract:Change-point detection in a time series aims to discover the time points at which some unknown underlying physical process that generates the time-series data has changed. We found that existing approaches become less accurate when the underlying process is complex and generates large varieties of patterns in the time series. To address this shortcoming, we propose Shape-CD, a simple, fast, and accurate change point detection method. Shape-CD uses shape-based features to model the patterns and a conditional neural field to model the temporal correlations among the time regions. We evaluated the performance of Shape-CD using four highly dynamic time-series datasets, including the ExtraSensory dataset with up to 2000 classes. Shape-CD demonstrated improved accuracy (7-60% higher in AUC) and faster computational speed compared to existing approaches. Furthermore, the Shape-CD model consists of only hundreds of parameters and require less data to train than other deep supervised learning models.