MPI-SWS
Abstract:Debugging is an essential skill when learning to program, yet its instruction and emphasis often vary widely across introductory courses. In the era of code-generating large language models (LLMs), the ability for students to reason about code and identify errors is increasingly important. However, students frequently resort to trial-and-error methods to resolve bugs without fully understanding the underlying issues. Developing the ability to identify and hypothesize the cause of bugs is crucial but can be time-consuming to teach effectively through traditional means. This paper introduces BugSpotter, an innovative tool that leverages an LLM to generate buggy code from a problem description and verify the synthesized bugs via a test suite. Students interact with BugSpotter by designing failing test cases, where the buggy code's output differs from the expected result as defined by the problem specification. This not only provides opportunities for students to enhance their debugging skills, but also to practice reading and understanding problem specifications. We deployed BugSpotter in a large classroom setting and compared the debugging exercises it generated to exercises hand-crafted by an instructor for the same problems. We found that the LLM-generated exercises produced by BugSpotter varied in difficulty and were well-matched to the problem specifications. Importantly, the LLM-generated exercises were comparable to those manually created by instructors with respect to student performance, suggesting that BugSpotter could be an effective and efficient aid for learning debugging.
Abstract:Debugging is an essential skill when learning to program, yet its instruction and emphasis often vary widely across introductory courses. In the era of code-generating large language models (LLMs), the ability for students to reason about code and identify errors is increasingly important. However, students frequently resort to trial-and-error methods to resolve bugs without fully understanding the underlying issues. Developing the ability to identify and hypothesize the cause of bugs is crucial but can be time-consuming to teach effectively through traditional means. This paper introduces BugSpotter, an innovative tool that leverages an LLM to generate buggy code from a problem description and verify the synthesized bugs via a test suite. Students interact with BugSpotter by designing failing test cases, where the buggy code's output differs from the expected result as defined by the problem specification. This not only provides opportunities for students to enhance their debugging skills, but also to practice reading and understanding problem specifications. We deployed BugSpotter in a large classroom setting and compared the debugging exercises it generated to exercises hand-crafted by an instructor for the same problems. We found that the LLM-generated exercises produced by BugSpotter varied in difficulty and were well-matched to the problem specifications. Importantly, the LLM-generated exercises were comparable to those manually created by instructors with respect to student performance, suggesting that BugSpotter could be an effective and efficient aid for learning debugging.
Abstract:Large language and multimodal models have shown remarkable successes on various benchmarks focused on specific skills such as general-purpose programming, natural language understanding, math word problem-solving, and visual question answering. However, it is unclear how well these models perform on tasks that require a combination of these skills. In this paper, we curate a novel program synthesis benchmark based on the XLogoOnline visual programming environment. The benchmark comprises 85 real-world tasks from the Mini-level of the XLogoOnline environment, each requiring a combination of different skills such as spatial planning, basic programming, and logical reasoning. Our evaluation shows that current state-of-the-art models like GPT-4V and Llama3-70B struggle to solve these tasks, achieving only 20% and 2.35% success rates. Next, we develop a fine-tuning pipeline to boost the performance of models by leveraging a large-scale synthetic training dataset with over 80000 tasks. Moreover, we showcase how emulator-driven feedback can be used to design a curriculum over training data distribution. We showcase that a fine-tuned Llama3-8B drastically outperforms GPT-4V and Llama3-70B models, and provide an in-depth analysis of the models' expertise across different skill dimensions. We will publicly release the benchmark for future research on program synthesis in visual programming.
Abstract:Generative models have demonstrated human-level proficiency in various benchmarks across domains like programming, natural sciences, and general knowledge. Despite these promising results on competitive benchmarks, they still struggle with seemingly simple problem-solving tasks typically carried out by elementary-level students. How do state-of-the-art models perform on standardized tests designed to assess computational thinking and problem-solving skills at schools? In this paper, we curate a novel benchmark involving computational thinking tests grounded in elementary visual programming domains. Our initial results show that state-of-the-art models like GPT-4o and Llama3 barely match the performance of an average school student. To further boost the performance of these models, we fine-tune them using a novel synthetic data generation methodology. The key idea is to develop a comprehensive dataset using symbolic methods that capture different skill levels, ranging from recognition of visual elements to multi-choice quizzes to synthesis-style tasks. We showcase how various aspects of symbolic information in synthetic data help improve fine-tuned models' performance. We will release the full implementation and datasets to facilitate further research on enhancing computational thinking in generative models.
Abstract:Generative AI and large language models hold great promise in enhancing programming education by generating individualized feedback and hints for learners. Recent works have primarily focused on improving the quality of generated feedback to achieve human tutors' quality. While quality is an important performance criterion, it is not the only criterion to optimize for real-world educational deployments. In this paper, we benchmark language models for programming feedback generation across several performance criteria, including quality, cost, time, and data privacy. The key idea is to leverage recent advances in the new paradigm of in-browser inference that allow running these models directly in the browser, thereby providing direct benefits across cost and data privacy. To boost the feedback quality of small models compatible with in-browser inference engines, we develop a fine-tuning pipeline based on GPT-4 generated synthetic data. We showcase the efficacy of fine-tuned Llama3-8B and Phi3-3.8B 4-bit quantized models using WebLLM's in-browser inference engine on three different Python programming datasets. We will release the full implementation along with a web app and datasets to facilitate further research on in-browser language models.
Abstract:Curriculum design for reinforcement learning (RL) can speed up an agent's learning process and help it learn to perform well on complex tasks. However, existing techniques typically require domain-specific hyperparameter tuning, involve expensive optimization procedures for task selection, or are suitable only for specific learning objectives. In this work, we consider curriculum design in contextual multi-task settings where the agent's final performance is measured w.r.t. a target distribution over complex tasks. We base our curriculum design on the Zone of Proximal Development concept, which has proven to be effective in accelerating the learning process of RL agents for uniform distribution over all tasks. We propose a novel curriculum, ProCuRL-Target, that effectively balances the need for selecting tasks that are not too difficult for the agent while progressing the agent's learning toward the target distribution via leveraging task correlations. We theoretically justify the task selection strategy of ProCuRL-Target by analyzing a simple learning setting with REINFORCE learner model. Our experimental results across various domains with challenging target task distributions affirm the effectiveness of our curriculum strategy over state-of-the-art baselines in accelerating the training process of deep RL agents.
Abstract:There has been a growing interest in developing learner models to enhance learning and teaching experiences in educational environments. However, existing works have primarily focused on structured environments relying on meticulously crafted representations of tasks, thereby limiting the agent's ability to generalize skills across tasks. In this paper, we aim to enhance the generalization capabilities of agents in open-ended text-based learning environments by integrating Reinforcement Learning (RL) with Large Language Models (LLMs). We investigate three types of agents: (i) RL-based agents that utilize natural language for state and action representations to find the best interaction strategy, (ii) LLM-based agents that leverage the model's general knowledge and reasoning through prompting, and (iii) hybrid LLM-assisted RL agents that combine these two strategies to improve agents' performance and generalization. To support the development and evaluation of these agents, we introduce PharmaSimText, a novel benchmark derived from the PharmaSim virtual pharmacy environment designed for practicing diagnostic conversations. Our results show that RL-based agents excel in task completion but lack in asking quality diagnostic questions. In contrast, LLM-based agents perform better in asking diagnostic questions but fall short of completing the task. Finally, hybrid LLM-assisted RL agents enable us to overcome these limitations, highlighting the potential of combining RL and LLMs to develop high-performing agents for open-ended learning environments.
Abstract:We study data corruption robustness in offline two-player zero-sum Markov games. Given a dataset of realized trajectories of two players, an adversary is allowed to modify an $\epsilon$-fraction of it. The learner's goal is to identify an approximate Nash Equilibrium policy pair from the corrupted data. We consider this problem in linear Markov games under different degrees of data coverage and corruption. We start by providing an information-theoretic lower bound on the suboptimality gap of any learner. Next, we propose robust versions of the Pessimistic Minimax Value Iteration algorithm, both under coverage on the corrupted data and under coverage only on the clean data, and show that they achieve (near)-optimal suboptimality gap bounds with respect to $\epsilon$. We note that we are the first to provide such a characterization of the problem of learning approximate Nash Equilibrium policies in offline two-player zero-sum Markov games under data corruption.
Abstract:In this paper, we take a step towards a deeper understanding of learning from human preferences by systematically comparing the paradigm of reinforcement learning from human feedback (RLHF) with the recently proposed paradigm of direct preference optimization (DPO). We focus our attention on the class of loglinear policy parametrization and linear reward functions. In order to compare the two paradigms, we first derive minimax statistical bounds on the suboptimality gap induced by both RLHF and DPO, assuming access to an oracle that exactly solves the optimization problems. We provide a detailed discussion on the relative comparison between the two paradigms, simultaneously taking into account the sample size, policy and reward class dimensions, and the regularization temperature. Moreover, we extend our analysis to the approximate optimization setting and derive exponentially decaying convergence rates for both RLHF and DPO. Next, we analyze the setting where the ground-truth reward is not realizable and find that, while RLHF incurs a constant additional error, DPO retains its asymptotically decaying gap by just tuning the temperature accordingly. Finally, we extend our comparison to the Markov decision process setting, where we generalize our results with exact optimization. To the best of our knowledge, we are the first to provide such a comparative analysis for RLHF and DPO.
Abstract:Reward functions are central in specifying the task we want a reinforcement learning agent to perform. Given a task and desired optimal behavior, we study the problem of designing informative reward functions so that the designed rewards speed up the agent's convergence. In particular, we consider expert-driven reward design settings where an expert or teacher seeks to provide informative and interpretable rewards to a learning agent. Existing works have considered several different reward design formulations; however, the key challenge is formulating a reward informativeness criterion that adapts w.r.t. the agent's current policy and can be optimized under specified structural constraints to obtain interpretable rewards. In this paper, we propose a novel reward informativeness criterion, a quantitative measure that captures how the agent's current policy will improve if it receives rewards from a specific reward function. We theoretically showcase the utility of the proposed informativeness criterion for adaptively designing rewards for an agent. Experimental results on two navigation tasks demonstrate the effectiveness of our adaptive reward informativeness criterion.