Abstract:Goal-directed interactive agents, which autonomously complete tasks through interactions with their environment, can assist humans in various domains of their daily lives. Recent advances in large language models (LLMs) led to a surge of new, more and more challenging tasks to evaluate such agents. To properly contextualize performance across these tasks, it is imperative to understand the different challenges they pose to agents. To this end, this survey compiles relevant tasks and environments for evaluating goal-directed interactive agents, structuring them along dimensions relevant for understanding current obstacles. An up-to-date compilation of relevant resources can be found on our project website: https://coli-saar.github.io/interactive-agents.
Abstract:We introduce Modelizer - a novel framework that, given a black-box program, learns a _model from its input/output behavior_ using _neural machine translation_. The resulting model _mocks_ the original program: Given an input, the model predicts the output that would have been produced by the program. However, the model is also _reversible_ - that is, the model can predict the input that would have produced a given output. Finally, the model is _differentiable_ and can be efficiently restricted to predict only a certain aspect of the program behavior. Modelizer uses _grammars_ to synthesize inputs and to parse the resulting outputs, allowing it to learn sequence-to-sequence associations between token streams. Other than input and output grammars, Modelizer only requires the ability to execute the program. The resulting models are _small_, requiring fewer than 6.3 million parameters for languages such as Markdown or HTML; and they are _accurate_, achieving up to 95.4% accuracy and a BLEU score of 0.98 with standard error 0.04 in mocking real-world applications. We foresee several _applications_ of these models, especially as the output of the program can be any aspect of program behavior. Besides mocking and predicting program behavior, the model can also synthesize inputs that are likely to produce a particular behavior, such as failures or coverage.
Abstract:Models need appropriate inductive biases to effectively learn from small amounts of data and generalize systematically outside of the training distribution. While Transformers are highly versatile and powerful, they can still benefit from enhanced structural inductive biases for seq2seq tasks, especially those involving syntactic transformations, such as converting active to passive voice or semantic parsing. In this paper, we propose to strengthen the structural inductive bias of a Transformer by intermediate pre-training to perform synthetically generated syntactic transformations of dependency trees given a description of the transformation. Our experiments confirm that this helps with few-shot learning of syntactic tasks such as chunking, and also improves structural generalization for semantic parsing. Our analysis shows that the intermediate pre-training leads to attention heads that keep track of which syntactic transformation needs to be applied to which token, and that the model can leverage these attention heads on downstream tasks.
Abstract:Discourse Representation Theory (DRT) distinguishes itself from other semantic representation frameworks by its ability to model complex semantic and discourse phenomena through structural nesting and variable binding. While seq2seq models hold the state of the art on DRT parsing, their accuracy degrades with the complexity of the sentence, and they sometimes struggle to produce well-formed DRT representations. We introduce the AMS parser, a compositional, neurosymbolic semantic parser for DRT. It rests on a novel mechanism for predicting quantifier scope. We show that the AMS parser reliably produces well-formed outputs and performs well on DRT parsing, especially on complex sentences.
Abstract:There is an increasing trend towards evaluating NLP models with LLM-generated judgments instead of human judgments. In the absence of a comparison against human data, this raises concerns about the validity of these evaluations; in case they are conducted with proprietary models, this also raises concerns over reproducibility. We provide JUDGE-BENCH, a collection of 20 NLP datasets with human annotations, and comprehensively evaluate 11 current LLMs, covering both open-weight and proprietary models, for their ability to replicate the annotations. Our evaluations show that each LLM exhibits a large variance across datasets in its correlation to human judgments. We conclude that LLMs are not yet ready to systematically replace human judges in NLP.
Abstract:We present a method for rewriting an input sentence to match specific values of nontrivial linguistic features, such as dependency depth. In contrast to earlier work, our method uses in-context learning rather than finetuning, making it applicable in use cases where data is sparse. We show that our model performs accurate rewrites and matches the state of the art on rewriting sentences to a specified school grade level.
Abstract:Collaboration is an integral part of human dialogue. Typical task-oriented dialogue games assign asymmetric roles to the participants, which limits their ability to elicit naturalistic role-taking in collaboration and its negotiation. We present a novel and simple online setup that favors balanced collaboration: a two-player 2D object placement game in which the players must negotiate the goal state themselves. We show empirically that human players exhibit a variety of role distributions, and that balanced collaboration improves task performance. We also present an LLM-based baseline agent which demonstrates that automatic playing of our game is an interesting challenge for artificial systems.
Abstract:Compositional generalization, the ability to predict complex meanings from training on simpler sentences, poses challenges for powerful pretrained seq2seq models. In this paper, we show that data augmentation methods that sample MRs and backtranslate them can be effective for compositional generalization, but only if we sample from the right distribution. Remarkably, sampling from a uniform distribution performs almost as well as sampling from the test distribution, and greatly outperforms earlier methods that sampled from the training distribution. We further conduct experiments to investigate the reason why this happens and where the benefit of such data augmentation methods come from.
Abstract:LLMs are being increasingly used for planning-style tasks, but their capabilities for planning and reasoning are poorly understood. We present a novel method for automatically converting planning benchmarks written in PDDL into textual descriptions and offer a benchmark dataset created with our method. We show that while the best LLM planners do well on many planning tasks, others remain out of reach of current methods.
Abstract:The ability to predict an NLP model's accuracy on unseen, potentially out-of-distribution data is a prerequisite for trustworthiness. We present a novel model that establishes upper and lower bounds on the accuracy, without requiring gold labels for the unseen data. We achieve this by training a discriminator which predicts whether the output of a given sequence-to-sequence model is correct or not. We show across a variety of tagging, parsing, and semantic parsing tasks that the gold accuracy is reliably between the predicted upper and lower bounds, and that these bounds are remarkably close together.