Abstract:Dialogue agents that support human users in solving complex tasks have received much attention recently. Many such tasks are NP-hard optimization problems that require careful collaborative exploration of the solution space. We introduce a novel dialogue game in which the agents collaboratively solve a two-player Traveling Salesman problem, along with an agent that combines LLM prompting with symbolic mechanisms for state tracking and grounding. Our best agent solves 45% of games optimally in self-play. It also demonstrates an ability to collaborate successfully with human users and generalize to unfamiliar graphs.
Abstract:We introduce the dataset of Everyday Hard Optimization Problems (EHOP), a collection of NP-hard optimization problems expressed in natural language. EHOP includes problem formulations that could be found in computer science textbooks, versions that are dressed up as problems that could arise in real life, and variants of well-known problems with inverted rules. We find that state-of-the-art LLMs, across multiple prompting strategies, systematically solve textbook problems more accurately than their real-life and inverted counterparts. We argue that this constitutes evidence that LLMs adapt solutions seen during training, rather than leveraging reasoning abilities that would enable them to generalize to novel problems.
Abstract:Analogical reasoning is considered core to human learning and cognition. Recent studies have compared the analogical reasoning abilities of human subjects and Large Language Models (LLMs) on abstract symbol manipulation tasks, such as letter string analogies. However, these studies largely neglect analogical reasoning over semantically meaningful symbols, such as natural language words. This ability to draw analogies that link language to non-linguistic domains, which we term semantic structure-mapping, is thought to play a crucial role in language acquisition and broader cognitive development. We test human subjects and LLMs on analogical reasoning tasks that require the transfer of semantic structure and content from one domain to another. Advanced LLMs match human performance across many task variations. However, humans and LLMs respond differently to certain task variations and semantic distractors. Overall, our data suggest that LLMs are approaching human-level performance on these important cognitive tasks, but are not yet entirely human like.