Abstract:We introduce Modelizer - a novel framework that, given a black-box program, learns a _model from its input/output behavior_ using _neural machine translation_. The resulting model _mocks_ the original program: Given an input, the model predicts the output that would have been produced by the program. However, the model is also _reversible_ - that is, the model can predict the input that would have produced a given output. Finally, the model is _differentiable_ and can be efficiently restricted to predict only a certain aspect of the program behavior. Modelizer uses _grammars_ to synthesize inputs and to parse the resulting outputs, allowing it to learn sequence-to-sequence associations between token streams. Other than input and output grammars, Modelizer only requires the ability to execute the program. The resulting models are _small_, requiring fewer than 6.3 million parameters for languages such as Markdown or HTML; and they are _accurate_, achieving up to 95.4% accuracy and a BLEU score of 0.98 with standard error 0.04 in mocking real-world applications. We foresee several _applications_ of these models, especially as the output of the program can be any aspect of program behavior. Besides mocking and predicting program behavior, the model can also synthesize inputs that are likely to produce a particular behavior, such as failures or coverage.