Abstract:While disentangled representations have shown promise in generative modeling and representation learning, their downstream usefulness remains debated. Recent studies re-defined disentanglement through a formal connection to symmetries, emphasizing the ability to reduce latent domains and consequently enhance generative capabilities. However, from an information theory viewpoint, assigning a complex attribute to a specific latent variable may be infeasible, limiting the applicability of disentangled representations to simple datasets. In this work, we introduce $\alpha$-TCVAE, a variational autoencoder optimized using a novel total correlation (TC) lower bound that maximizes disentanglement and latent variables informativeness. The proposed TC bound is grounded in information theory constructs, generalizes the $\beta$-VAE lower bound, and can be reduced to a convex combination of the known variational information bottleneck (VIB) and conditional entropy bottleneck (CEB) terms. Moreover, we present quantitative analyses that support the idea that disentangled representations lead to better generative capabilities and diversity. Additionally, we perform downstream task experiments from both representation and RL domains to assess our questions from a broader ML perspective. Our results demonstrate that $\alpha$-TCVAE consistently learns more disentangled representations than baselines and generates more diverse observations without sacrificing visual fidelity. Notably, $\alpha$-TCVAE exhibits marked improvements on MPI3D-Real, the most realistic disentangled dataset in our study, confirming its ability to represent complex datasets when maximizing the informativeness of individual variables. Finally, testing the proposed model off-the-shelf on a state-of-the-art model-based RL agent, Director, significantly shows $\alpha$-TCVAE downstream usefulness on the loconav Ant Maze task.
Abstract:This work reimplements a recent semantic bootstrapping child-language acquisition model, which was originally designed for English, and trains it to learn a new language: Hebrew. The model learns from pairs of utterances and logical forms as meaning representations, and acquires both syntax and word meanings simultaneously. The results show that the model mostly transfers to Hebrew, but that a number of factors, including the richer morphology in Hebrew, makes the learning slower and less robust. This suggests that a clear direction for future work is to enable the model to leverage the similarities between different word forms.
Abstract:It is known that human speech and certain animal vocalizations can convey meaningful content because we can decipher the content that a given utterance does convey. This paper explores an alternative approach to determining whether a signal is meaningful, one that analyzes only the signal itself and is independent of what the conveyed meaning might be. We devise a method that takes a waveform as input and outputs a score indicating its degree of `meaningfulness`. We cluster contiguous portions of the input to minimize the total description length, and then take the length of the code of the assigned cluster labels as meaningfulness score. We evaluate our method empirically, against several baselines, and show that it is the only one to give a high score to human speech in various languages and with various speakers, a moderate score to animal vocalizations from birds and orcas, and a low score to ambient noise from various sources.
Abstract:In this paper we address the task of summarizing television shows, which touches key areas in AI research: complex reasoning, multiple modalities, and long narratives. We present a modular approach where separate components perform specialized sub-tasks which we argue affords greater flexibility compared to end-to-end methods. Our modules involve detecting scene boundaries, reordering scenes so as to minimize the number of cuts between different events, converting visual information to text, summarizing the dialogue in each scene, and fusing the scene summaries into a final summary for the entire episode. We also present a new metric, PREFS (Precision and Recall Evaluation of Summary FactS), to measure both precision and recall of generated summaries, which we decompose into atomic facts. Tested on the recently released SummScreen3D dataset Papalampidi and Lapata (2023), our method produces higher quality summaries than comparison models, as measured with ROUGE and our new fact-based metric.
Abstract:Existing image complexity metrics cannot distinguish meaningful content from noise. This means that white noise images, which contain no meaningful information, are judged as highly complex. We present a new image complexity metric through hierarchical clustering of patches. We use the minimum description length principle to determine the number of clusters and designate certain points as outliers and, hence, correctly assign white noise a low score. The presented method has similarities to theoretical ideas for measuring meaningful complexity. We conduct experiments on seven different sets of images, which show that our method assigns the most accurate scores to all images considered. Additionally, comparing the different levels of the hierarchy of clusters can reveal how complexity manifests at different scales, from local detail to global structure. We then present ablation studies showing the contribution of the components of our method, and that it continues to assign reasonable scores when the inputs are modified in certain ways, including the addition of Gaussian noise and the lowering of the resolution.
Abstract:Recent years have seen growing interest in learning disentangled representations, in which distinct features, such as size or shape, are represented by distinct neurons. Quantifying the extent to which a given representation is disentangled is not straightforward; multiple metrics have been proposed. In this paper, we identify two failings of existing metrics, which mean they can assign a high score to a model which is still entangled, and we propose two new metrics, which redress these problems. We then consider the task of compositional generalization. Unlike prior works, we treat this as a classification problem, which allows us to use it to measure the disentanglement ability of the encoder, without depending on the decoder. We show that performance on this task is (a) generally quite poor, (b) correlated with most disentanglement metrics, and (c) most strongly correlated with our newly proposed metrics.
Abstract:Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed. While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster. Successful existing models have employed various techniques to avoid this problem, most of which require data augmentation or which aim to make the average soft assignment across the dataset the same for each cluster. We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments. Using a Bayesian framework, we derive an intuitive optimization objective that can be straightforwardly included in the training of the encoder network. Tested on four image datasets, we show that it consistently avoids collapse more robustly than other methods and that it leads to more accurate clustering. We also conduct further experiments and analyses justifying our choice to regularize the hard cluster assignments.
Abstract:There has been much recent research on human activity re\-cog\-ni\-tion (HAR), due to the proliferation of wearable sensors in watches and phones, and the advances of deep learning methods, which avoid the need to manually extract features from raw sensor signals. A significant disadvantage of deep learning applied to HAR is the need for manually labelled training data, which is especially difficult to obtain for HAR datasets. Progress is starting to be made in the unsupervised setting, in the form of deep HAR clustering models, which can assign labels to data without having been given any labels to train on, but there are problems with evaluating deep HAR clustering models, which makes assessing the field and devising new methods difficult. In this paper, we highlight several distinct problems with how deep HAR clustering models are evaluated, describing these problems in detail and conducting careful experiments to explicate the effect that they can have on results. We then discuss solutions to these problems, and suggest standard evaluation settings for future deep HAR clustering models. Additionally, we present a new deep clustering model for HAR. When tested under our proposed settings, our model performs better than (or on par with) existing models, while also being more efficient and better able to scale to more complex datasets by avoiding the need for an autoencoder.
Abstract:This paper presents FASTFOOD, a rule-based Natural Language Generation Program for cooking recipes. Recipes are generated by using an Automated Theorem Proving procedure to select the ingredients and instructions, with ingredients corresponding to axioms and instructions to implications. FASTFOOD also contains a temporal optimization module which can rearrange the recipe to make it more time-efficient for the user, e.g. the recipe specifies to chop the vegetables while the rice is boiling. The system is described in detail, using a framework which divides Natural Language Generation into 4 phases: content production, content selection, content organisation and content realisation. A comparison is then made with similar existing systems and techniques.
Abstract:Deep neural networks (DNNs) offer a means of addressing the challenging task of clustering high-dimensional data. DNNs can extract useful features, and so produce a lower dimensional representation, which is more amenable to clustering techniques. As clustering is typically performed in a purely unsupervised setting, where no training labels are available, the question then arises as to how the DNN feature extractor can be trained. The most accurate existing approaches combine the training of the DNN with the clustering objective, so that information from the clustering process can be used to update the DNN to produce better features for clustering. One problem with this approach is that these ``pseudo-labels'' produced by the clustering algorithm are noisy, and any errors that they contain will hurt the training of the DNN. In this paper, we propose selective pseudo-label clustering, which uses only the most confident pseudo-labels for training the~DNN. We formally prove the performance gains under certain conditions. Applied to the task of image clustering, the new approach achieves a state-of-the-art performance on three popular image datasets. Code is available at https://github.com/Lou1sM/clustering.