The proliferation of creative video content has driven demand for adapting language models to handle video input and enable multimodal understanding. However, end-to-end models struggle to process long videos due to their size and complexity. An effective alternative is to divide them into smaller chunks to be processed separately, and this motivates a method for choosing where the chunk boundaries should be. In this paper, we propose an algorithm for segmenting videos into contiguous chunks, based on the minimum description length principle, coupled with a dynamic programming search. The algorithm is entirely parameter-free, given feature vectors, not requiring a set threshold or the number or size of chunks to be specified. We show empirically that the breakpoints it produces more accurately approximate scene boundaries in long videos, compared with existing methods for scene detection, even when such methods have access to the true number of scenes. We then showcase this algorithm in two tasks: long video summarization, and retrieval-augmented video question answering. In both cases, scene breaks produced by our algorithm lead to better downstream performance than existing methods for video segmentation.