Abstract:Training transformer-based encoder-decoder models for long document summarization poses a significant challenge due to the quadratic memory consumption during training. Several approaches have been proposed to extend the input length at test time, but training with these approaches is still difficult, requiring truncation of input documents and causing a mismatch between training and test conditions. In this work, we propose CachED (Gradient $\textbf{Cach}$ing for $\textbf{E}$ncoder-$\textbf{D}$ecoder models), an approach that enables end-to-end training of existing transformer-based encoder-decoder models, using the entire document without truncation. Specifically, we apply non-overlapping sliding windows to input documents, followed by fusion in decoder. During backpropagation, the gradients are cached at the decoder and are passed through the encoder in chunks by re-computing the hidden vectors, similar to gradient checkpointing. In the experiments on long document summarization, we extend BART to CachED BART, processing more than 500K tokens during training and achieving superior performance without using any additional parameters.
Abstract:Movie screenplay summarization is challenging, as it requires an understanding of long input contexts and various elements unique to movies. Large language models have shown significant advancements in document summarization, but they often struggle with processing long input contexts. Furthermore, while television transcripts have received attention in recent studies, movie screenplay summarization remains underexplored. To stimulate research in this area, we present a new dataset, MovieSum, for abstractive summarization of movie screenplays. This dataset comprises 2200 movie screenplays accompanied by their Wikipedia plot summaries. We manually formatted the movie screenplays to represent their structural elements. Compared to existing datasets, MovieSum possesses several distinctive features: (1) It includes movie screenplays, which are longer than scripts of TV episodes. (2) It is twice the size of previous movie screenplay datasets. (3) It provides metadata with IMDb IDs to facilitate access to additional external knowledge. We also show the results of recently released large language models applied to summarization on our dataset to provide a detailed baseline.
Abstract:Maybe not. We identify and analyse errors in the popular Massive Multitask Language Understanding (MMLU) benchmark. Even though MMLU is widely adopted, our analysis demonstrates numerous ground truth errors that obscure the true capabilities of LLMs. For example, we find that 57% of the analysed questions in the Virology subset contain errors. To address this issue, we introduce a comprehensive framework for identifying dataset errors using a novel error taxonomy. Then, we create MMLU-Redux, which is a subset of 3,000 manually re-annotated questions across 30 MMLU subjects. Using MMLU-Redux, we demonstrate significant discrepancies with the model performance metrics that were originally reported. Our results strongly advocate for revising MMLU's error-ridden questions to enhance its future utility and reliability as a benchmark. Therefore, we open up MMLU-Redux for additional annotation https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux.
Abstract:Large Language Models (LLMs) have transformed the Natural Language Processing (NLP) landscape with their remarkable ability to understand and generate human-like text. However, these models are prone to ``hallucinations'' -- outputs that do not align with factual reality or the input context. This paper introduces the Hallucinations Leaderboard, an open initiative to quantitatively measure and compare the tendency of each model to produce hallucinations. The leaderboard uses a comprehensive set of benchmarks focusing on different aspects of hallucinations, such as factuality and faithfulness, across various tasks, including question-answering, summarisation, and reading comprehension. Our analysis provides insights into the performance of different models, guiding researchers and practitioners in choosing the most reliable models for their applications.
Abstract:Abstractive summarization for long-form narrative texts such as movie scripts is challenging due to the computational and memory constraints of current language models. A movie script typically comprises a large number of scenes; however, only a fraction of these scenes are salient, i.e., important for understanding the overall narrative. The salience of a scene can be operationalized by considering it as salient if it is mentioned in the summary. Automatically identifying salient scenes is difficult due to the lack of suitable datasets. In this work, we introduce a scene saliency dataset that consists of human-annotated salient scenes for 100 movies. We propose a two-stage abstractive summarization approach which first identifies the salient scenes in script and then generates a summary using only those scenes. Using QA-based evaluation, we show that our model outperforms previous state-of-the-art summarization methods and reflects the information content of a movie more accurately than a model that takes the whole movie script as input.
Abstract:Deploying trained convolutional neural networks (CNNs) to mobile devices is a challenging task because of the simultaneous requirements of the deployed model to be fast, lightweight and accurate. Designing and training a CNN architecture that does well on all three metrics is highly non-trivial and can be very time-consuming if done by hand. One way to solve this problem is to compress the trained CNN models before deploying to mobile devices. This work asks and answers three questions on compressing CNN models automatically: a) How to control the trade-off between speed, memory and accuracy during model compression? b) In practice, a deployed model may not see all classes and/or may not need to produce all class labels. Can this fact be used to improve the trade-off? c) How to scale the compression algorithm to execute within a reasonable amount of time for many deployments? The paper demonstrates that a model compression algorithm utilizing reinforcement learning with architecture search and knowledge distillation can answer these questions in the affirmative. Experimental results are provided for current state-of-the-art CNN model families for image feature extraction like VGG and ResNet with CIFAR datasets.