Abstract:Click-Through Rate (CTR) prediction is essential in online advertising, where semantic information plays a pivotal role in shaping user decisions and enhancing CTR effectiveness. Capturing and modeling deep semantic information, such as a user's preference for "H\"aagen-Dazs' HEAVEN strawberry light ice cream" due to its health-conscious and premium attributes, is challenging. Traditional semantic modeling often overlooks these intricate details at the user and item levels. To bridge this gap, we introduce a novel approach that models deep semantic information end-to-end, leveraging the comprehensive world knowledge capabilities of Large Language Models (LLMs). Our proposed LLM-infused CTR prediction framework(Multi-level Deep Semantic Information Infused CTR model via Distillation, MSD) is designed to uncover deep semantic insights by utilizing LLMs to extract and distill critical information into a smaller, more efficient model, enabling seamless end-to-end training and inference. Importantly, our framework is carefully designed to balance efficiency and effectiveness, ensuring that the model not only achieves high performance but also operates with optimal resource utilization. Online A/B tests conducted on the Meituan sponsored-search system demonstrate that our method significantly outperforms baseline models in terms of Cost Per Mile (CPM) and CTR, validating its effectiveness, scalability, and balanced approach in real-world applications.
Abstract:Accurate post-click conversion rate (CVR) estimation is crucial for online advertising systems. Despite significant advances in causal approaches designed to address the Sample Selection Bias problem, CVR estimation still faces challenges due to Covariate Shift. Given the intrinsic connection between the distribution of covariates in the click and non-click spaces, this study proposes an Exposure-Guided Embedding Alignment Network (EGEAN) to address estimation bias caused by covariate shift. Additionally, we propose a Parameter Varying Doubly Robust Estimator with steady-state control to handle small propensities better. Online A/B tests conducted on the Meituan advertising system demonstrate that our method significantly outperforms baseline models with respect to CVR and GMV, validating its effectiveness. Code is available: https://github.com/hydrogen-maker/EGEAN.