Abstract:In the realm of option pricing, existing models are typically classified into principle-driven methods, such as solving partial differential equations (PDEs) that pricing function satisfies, and data-driven approaches, such as machine learning (ML) techniques that parameterize the pricing function directly. While principle-driven models offer a rigorous theoretical framework, they often rely on unrealistic assumptions, such as asset processes adhering to fixed stochastic differential equations (SDEs). Moreover, they can become computationally intensive, particularly in high-dimensional settings when analytical solutions are not available and thus numerical solutions are needed. In contrast, data-driven models excel in capturing market data trends, but they often lack alignment with core financial principles, raising concerns about interpretability and predictive accuracy, especially when dealing with limited or biased datasets. This work proposes a hybrid approach to address these limitations by integrating the strengths of both principled and data-driven methodologies. Our framework combines the theoretical rigor and interpretability of PDE-based models with the adaptability of machine learning techniques, yielding a more versatile methodology for pricing a broad spectrum of options. We validate our approach across different volatility modeling approaches-both with constant volatility (Black-Scholes) and stochastic volatility (Heston), demonstrating that our proposed framework, Finance-Informed Neural Network (FINN), not only enhances predictive accuracy but also maintains adherence to core financial principles. FINN presents a promising tool for practitioners, offering robust performance across a variety of market conditions.
Abstract:Automatic detection and prevention of open-set failures are crucial in closed-loop robotic systems. Recent studies often struggle to simultaneously identify unexpected failures reactively after they occur and prevent foreseeable ones proactively. To this end, we propose Code-as-Monitor (CaM), a novel paradigm leveraging the vision-language model (VLM) for both open-set reactive and proactive failure detection. The core of our method is to formulate both tasks as a unified set of spatio-temporal constraint satisfaction problems and use VLM-generated code to evaluate them for real-time monitoring. To enhance the accuracy and efficiency of monitoring, we further introduce constraint elements that abstract constraint-related entities or their parts into compact geometric elements. This approach offers greater generality, simplifies tracking, and facilitates constraint-aware visual programming by leveraging these elements as visual prompts. Experiments show that CaM achieves a 28.7% higher success rate and reduces execution time by 31.8% under severe disturbances compared to baselines across three simulators and a real-world setting. Moreover, CaM can be integrated with open-loop control policies to form closed-loop systems, enabling long-horizon tasks in cluttered scenes with dynamic environments.
Abstract:Compliance plays a crucial role in manipulation, as it balances between the concurrent control of position and force under uncertainties. Yet compliance is often overlooked by today's visuomotor policies that solely focus on position control. This paper introduces Adaptive Compliance Policy (ACP), a novel framework that learns to dynamically adjust system compliance both spatially and temporally for given manipulation tasks from human demonstrations, improving upon previous approaches that rely on pre-selected compliance parameters or assume uniform constant stiffness. However, computing full compliance parameters from human demonstrations is an ill-defined problem. Instead, we estimate an approximate compliance profile with two useful properties: avoiding large contact forces and encouraging accurate tracking. Our approach enables robots to handle complex contact-rich manipulation tasks and achieves over 50\% performance improvement compared to state-of-the-art visuomotor policy methods. For result videos, see https://adaptive-compliance.github.io/
Abstract:Telepresence technology aims to provide an immersive virtual presence for remote conference applications, and it is extremely important to synthesize high-quality binaural audio signals for this aim. Because the ambient noise is often inevitable in practical application scenarios, it is highly desired that binaural audio signals without noise can be obtained from microphone-array signals directly. For this purpose, this paper proposes a new end-to-end noise-immune binaural audio synthesis framework from microphone-array signals, abbreviated as Array2BR, and experimental results show that binaural cues can be correctly mapped and noise can be well suppressed simultaneously using the proposed framework. Compared with existing methods, the proposed method achieved better performance in terms of both objective and subjective metric scores.
Abstract:In this paper, we propose a novel Risk-Aware Local Trajectory Planner (RALTPER) for autonomous vehicles in complex environments characterized by Gaussian uncertainty. The proposed method integrates risk awareness and trajectory planning by leveraging probabilistic models to evaluate the likelihood of collisions with dynamic and static obstacles. The RALTPER focuses on collision avoidance constraints for both the ego vehicle region and the Gaussian-obstacle risk region. Additionally, this work enhances the generalization of both vehicle and obstacle models, making the planner adaptable to a wider range of scenarios. Our approach formulates the planning problem as a nonlinear optimization, solved using the IPOPT solver within the CasADi environment. The planner is evaluated through simulations of various challenging scenarios, including complex, static, mixed environment and narrow single-lane avoidance of pedestrians. Results demonstrate that RALTPER achieves safer and more efficient trajectory planning particularly in navigating narrow areas where a more accurate vehicle profile representation is critical for avoiding collisions.
Abstract:Symbiotic communication (SC) is known as a new wireless communication paradigm, similar to the natural ecosystem population, and can enable multiple communication systems to cooperate and mutualize through service exchange and resource sharing. As a result, SC is seen as an important potential technology for future sixth-generation (6G) communications, solving the problem of lack of spectrum resources and energy inefficiency. Symbiotic relationships among communication systems can complement radio resources in 6G. However, the absence of established trust relationships among diverse communication systems presents a formidable hurdle in ensuring efficient and trusted resource and service exchange within SC frameworks. To better realize trusted SC services in 6G, in this paper, we propose a solution that converges SC and blockchain, called a symbiotic blockchain network (SBN). Specifically, we first use cognitive backscatter communication to transform blockchain consensus, that is, the symbiotic blockchain consensus (SBC), so that it can be better suited for the wireless network. Then, for SBC, we propose a highly energy-efficient sharding scheme to meet the extremely low power consumption requirements in 6G. Finally, such a blockchain scheme guarantees trusted transactions of communication services in SC. Through ablation experiments, our proposed SBN demonstrates significant efficacy in mitigating energy consumption and reducing processing latency in adversarial networks, which is expected to achieve a sustainable and trusted 6G wireless network.
Abstract:We present Im2Flow2Act, a scalable learning framework that enables robots to acquire manipulation skills from diverse data sources. The key idea behind Im2Flow2Act is to use object flow as the manipulation interface, bridging domain gaps between different embodiments (i.e., human and robot) and training environments (i.e., real-world and simulated). Im2Flow2Act comprises two components: a flow generation network and a flow-conditioned policy. The flow generation network, trained on human demonstration videos, generates object flow from the initial scene image, conditioned on the task description. The flow-conditioned policy, trained on simulated robot play data, maps the generated object flow to robot actions to realize the desired object movements. By using flow as input, this policy can be directly deployed in the real world with a minimal sim-to-real gap. By leveraging real-world human videos and simulated robot play data, we bypass the challenges of teleoperating physical robots in the real world, resulting in a scalable system for diverse tasks. We demonstrate Im2Flow2Act's capabilities in a variety of real-world tasks, including the manipulation of rigid, articulated, and deformable objects.
Abstract:Audio signals provide rich information for the robot interaction and object properties through contact. These information can surprisingly ease the learning of contact-rich robot manipulation skills, especially when the visual information alone is ambiguous or incomplete. However, the usage of audio data in robot manipulation has been constrained to teleoperated demonstrations collected by either attaching a microphone to the robot or object, which significantly limits its usage in robot learning pipelines. In this work, we introduce ManiWAV: an 'ear-in-hand' data collection device to collect in-the-wild human demonstrations with synchronous audio and visual feedback, and a corresponding policy interface to learn robot manipulation policy directly from the demonstrations. We demonstrate the capabilities of our system through four contact-rich manipulation tasks that require either passively sensing the contact events and modes, or actively sensing the object surface materials and states. In addition, we show that our system can generalize to unseen in-the-wild environments, by learning from diverse in-the-wild human demonstrations. Project website: https://mani-wav.github.io/
Abstract:The creation of large, diverse, high-quality robot manipulation datasets is an important stepping stone on the path toward more capable and robust robotic manipulation policies. However, creating such datasets is challenging: collecting robot manipulation data in diverse environments poses logistical and safety challenges and requires substantial investments in hardware and human labour. As a result, even the most general robot manipulation policies today are mostly trained on data collected in a small number of environments with limited scene and task diversity. In this work, we introduce DROID (Distributed Robot Interaction Dataset), a diverse robot manipulation dataset with 76k demonstration trajectories or 350 hours of interaction data, collected across 564 scenes and 84 tasks by 50 data collectors in North America, Asia, and Europe over the course of 12 months. We demonstrate that training with DROID leads to policies with higher performance and improved generalization ability. We open source the full dataset, policy learning code, and a detailed guide for reproducing our robot hardware setup.
Abstract:Paper is a cheap, recyclable, and clean material that is often used to make practical tools. Traditional tool design either relies on simulation or physical analysis, which is often inaccurate and time-consuming. In this paper, we propose PaperBot, an approach that directly learns to design and use a tool in the real world using paper without human intervention. We demonstrated the effectiveness and efficiency of PaperBot on two tool design tasks: 1. learning to fold and throw paper airplanes for maximum travel distance 2. learning to cut paper into grippers that exert maximum gripping force. We present a self-supervised learning framework that learns to perform a sequence of folding, cutting, and dynamic manipulation actions in order to optimize the design and use of a tool. We deploy our system to a real-world two-arm robotic system to solve challenging design tasks that involve aerodynamics (paper airplane) and friction (paper gripper) that are impossible to simulate accurately.