In this paper, we propose a novel Risk-Aware Local Trajectory Planner (RALTPER) for autonomous vehicles in complex environments characterized by Gaussian uncertainty. The proposed method integrates risk awareness and trajectory planning by leveraging probabilistic models to evaluate the likelihood of collisions with dynamic and static obstacles. The RALTPER focuses on collision avoidance constraints for both the ego vehicle region and the Gaussian-obstacle risk region. Additionally, this work enhances the generalization of both vehicle and obstacle models, making the planner adaptable to a wider range of scenarios. Our approach formulates the planning problem as a nonlinear optimization, solved using the IPOPT solver within the CasADi environment. The planner is evaluated through simulations of various challenging scenarios, including complex, static, mixed environment and narrow single-lane avoidance of pedestrians. Results demonstrate that RALTPER achieves safer and more efficient trajectory planning particularly in navigating narrow areas where a more accurate vehicle profile representation is critical for avoiding collisions.