Abstract:Developing agents capable of fluid gameplay in first/third-person games without API access remains a critical challenge in Artificial General Intelligence (AGI). Recent efforts leverage Vision Language Models (VLMs) as direct controllers, frequently pausing the game to analyze screens and plan action through language reasoning. However, this inefficient paradigm fundamentally restricts agents to basic and non-fluent interactions: relying on isolated VLM reasoning for each action makes it impossible to handle tasks requiring high reactivity (e.g., FPS shooting) or dynamic adaptability (e.g., ACT combat). To handle this, we propose a paradigm shift in gameplay agent design: instead of directly controlling gameplay, VLM develops specialized execution modules tailored for tasks like shooting and combat. These modules handle real-time game interactions, elevating VLM to a high-level developer. Building upon this paradigm, we introduce GameSense, a gameplay agent framework where VLM develops task-specific game sense modules by observing task execution and leveraging vision tools and neural network training pipelines. These modules encapsulate action-feedback logic, ranging from direct action rules to neural network-based decisions. Experiments demonstrate that our framework is the first to achieve fluent gameplay in diverse genres, including ACT, FPS, and Flappy Bird, setting a new benchmark for game-playing agents.
Abstract:With the development of VR-related techniques, viewers can enjoy a realistic and immersive experience through a head-mounted display, while omnidirectional video with a low frame rate can lead to user dizziness. However, the prevailing plane frame interpolation methodologies are unsuitable for Omnidirectional Video Interpolation, chiefly due to the lack of models tailored to such videos with strong distortion, compounded by the scarcity of valuable datasets for Omnidirectional Video Frame Interpolation. In this paper, we introduce the benchmark dataset, 360VFI, for Omnidirectional Video Frame Interpolation. We present a practical implementation that introduces a distortion prior from omnidirectional video into the network to modulate distortions. We especially propose a pyramid distortion-sensitive feature extractor that uses the unique characteristics of equirectangular projection (ERP) format as prior information. Moreover, we devise a decoder that uses an affine transformation to facilitate the synthesis of intermediate frames further. 360VFI is the first dataset and benchmark that explores the challenge of Omnidirectional Video Frame Interpolation. Through our benchmark analysis, we presented four different distortion conditions scenes in the proposed 360VFI dataset to evaluate the challenge triggered by distortion during interpolation. Besides, experimental results demonstrate that Omnidirectional Video Interpolation can be effectively improved by modeling for omnidirectional distortion.