Abstract:In the realm of medical image analysis, self-supervised learning (SSL) techniques have emerged to alleviate labeling demands, while still facing the challenge of training data scarcity owing to escalating resource requirements and privacy constraints. Numerous efforts employ generative models to generate high-fidelity, unlabeled 3D volumes across diverse modalities and anatomical regions. However, the intricate and indistinguishable anatomical structures within the abdomen pose a unique challenge to abdominal CT volume generation compared to other anatomical regions. To address the overlooked challenge, we introduce the Locality-Aware Diffusion (Lad), a novel method tailored for exquisite 3D abdominal CT volume generation. We design a locality loss to refine crucial anatomical regions and devise a condition extractor to integrate abdominal priori into generation, thereby enabling the generation of large quantities of high-quality abdominal CT volumes essential for SSL tasks without the need for additional data such as labels or radiology reports. Volumes generated through our method demonstrate remarkable fidelity in reproducing abdominal structures, achieving a decrease in FID score from 0.0034 to 0.0002 on AbdomenCT-1K dataset, closely mirroring authentic data and surpassing current methods. Extensive experiments demonstrate the effectiveness of our method in self-supervised organ segmentation tasks, resulting in an improvement in mean Dice scores on two abdominal datasets effectively. These results underscore the potential of synthetic data to advance self-supervised learning in medical image analysis.
Abstract:Coreset selection seeks to choose a subset of crucial training samples for efficient learning. It has gained traction in deep learning, particularly with the surge in training dataset sizes. Sample selection hinges on two main aspects: a sample's representation in enhancing performance and the role of sample diversity in averting overfitting. Existing methods typically measure both the representation and diversity of data based on similarity metrics, such as L2-norm. They have capably tackled representation via distribution matching guided by the similarities of features, gradients, or other information between data. However, the results of effectively diverse sample selection are mired in sub-optimality. This is because the similarity metrics usually simply aggregate dimension similarities without acknowledging disparities among the dimensions that significantly contribute to the final similarity. As a result, they fall short of adequately capturing diversity. To address this, we propose a feature-based diversity constraint, compelling the chosen subset to exhibit maximum diversity. Our key lies in the introduction of a novel Contributing Dimension Structure (CDS) metric. Different from similarity metrics that measure the overall similarity of high-dimensional features, our CDS metric considers not only the reduction of redundancy in feature dimensions, but also the difference between dimensions that contribute significantly to the final similarity. We reveal that existing methods tend to favor samples with similar CDS, leading to a reduced variety of CDS types within the coreset and subsequently hindering model performance. In response, we enhance the performance of five classical selection methods by integrating the CDS constraint. Our experiments on three datasets demonstrate the general effectiveness of the proposed method in boosting existing methods.