Abstract:Robotic manipulation in contact-rich environments remains challenging, particularly when relying on conventional tactile sensors that suffer from limited sensing range, reliability, and cost-effectiveness. In this work, we present LVTG, a low-cost visuo-tactile gripper designed for stable, robust, and efficient physical interaction. Unlike existing visuo-tactile sensors, LVTG enables more effective and stable grasping of larger and heavier everyday objects, thanks to its enhanced tactile sensing area and greater opening angle. Its surface skin is made of highly wear-resistant material, significantly improving durability and extending operational lifespan. The integration of vision and tactile feedback allows LVTG to provide rich, high-fidelity sensory data, facilitating reliable perception during complex manipulation tasks. Furthermore, LVTG features a modular design that supports rapid maintenance and replacement. To effectively fuse vision and touch, We adopt a CLIP-inspired contrastive learning objective to align tactile embeddings with their corresponding visual observations, enabling a shared cross-modal representation space for visuo-tactile perception. This alignment improves the performance of an Action Chunking Transformer (ACT) policy in contact-rich manipulation, leading to more efficient data collection and more effective policy learning. Compared to the original ACT method, the proposed LVTG with pretraining achieves significantly higher success rates in manipulation tasks.
Abstract:Vision Language Action (VLA) models enable instruction following manipulation, yet dualarm deployment remains unsafe due to under modeled selfcollisions between arms and grasped objects. We introduce CoFreeVLA, which augments an endtoend VLA with a short horizon selfcollision risk estimator that predicts collision likelihood from proprioception, visual embeddings, and planned actions. The estimator gates risky commands, recovers to safe states via risk-guided adjustments, and shapes policy refinement for safer rollouts. It is pre-trained with model-based collision labels and posttrained on real robot rollouts for calibration. On five bimanual tasks with the PiPER robot arm, CoFreeVLA reduces selfcollisions and improves success rates versus RDT and APEX.
Abstract:Diffusion-based policies have recently shown strong results in robot manipulation, but their extension to multi-task scenarios is hindered by the high cost of scaling model size and demonstrations. We introduce Skill Mixture-of-Experts Policy (SMP), a diffusion-based mixture-of-experts policy that learns a compact orthogonal skill basis and uses sticky routing to compose actions from a small, task-relevant subset of experts at each step. A variational training objective supports this design, and adaptive expert activation at inference yields fast sampling without oversized backbones. We validate SMP in simulation and on a real dual-arm platform with multi-task learning and transfer learning tasks, where SMP achieves higher success rates and markedly lower inference cost than large diffusion baselines. These results indicate a practical path toward scalable, transferable multi-task manipulation: learn reusable skills once, activate only what is needed, and adapt quickly when tasks change.
Abstract:Humanoid robots are envisioned as general-purpose platforms in human-centered environments, yet their deployment is limited by vulnerability to falls and the risks posed by rigid metal-plastic structures to people and surroundings. We introduce a soft-rigid co-design framework that leverages non-Newtonian fluid-based soft responsive materials to enhance humanoid safety. The material remains compliant during normal interaction but rapidly stiffens under impact, absorbing and dissipating fall-induced forces. Physics-based simulations guide protector placement and thickness and enable learning of active fall policies. Applied to a 42 kg life-size humanoid, the protector markedly reduces peak impact and allows repeated falls without hardware damage, including drops from 3 m and tumbles down long staircases. Across diverse scenarios, the approach improves robot robustness and environmental safety. By uniting responsive materials, structural co-design, and learning-based control, this work advances interact-safe, industry-ready humanoid robots.
Abstract:In visuomotor policy learning, diffusion-based imitation learning has become widely adopted for its ability to capture diverse behaviors. However, approaches built on ordinary and stochastic denoising processes struggle to jointly achieve fast sampling and strong multi-modality. To address these challenges, we propose the Hybrid Consistency Policy (HCP). HCP runs a short stochastic prefix up to an adaptive switch time, and then applies a one-step consistency jump to produce the final action. To align this one-jump generation, HCP performs time-varying consistency distillation that combines a trajectory-consistency objective to keep neighboring predictions coherent and a denoising-matching objective to improve local fidelity. In both simulation and on a real robot, HCP with 25 SDE steps plus one jump approaches the 80-step DDPM teacher in accuracy and mode coverage while significantly reducing latency. These results show that multi-modality does not require slow inference, and a switch time decouples mode retention from speed. It yields a practical accuracy efficiency trade-off for robot policies.
Abstract:Dynamic obstacle avoidance (DOA) is critical for quadrupedal robots operating in environments with moving obstacles or humans. Existing approaches typically rely on navigation-based trajectory replanning, which assumes sufficient reaction time and leading to fails when obstacles approach rapidly. In such scenarios, quadrupedal robots require reflexive evasion capabilities to perform instantaneous, low-latency maneuvers. This paper introduces Reflexive Evasion Robot (REBot), a control framework that enables quadrupedal robots to achieve real-time reflexive obstacle avoidance. REBot integrates an avoidance policy and a recovery policy within a finite-state machine. With carefully designed learning curricula and by incorporating regularization and adaptive rewards, REBot achieves robust evasion and rapid stabilization in instantaneous DOA tasks. We validate REBot through extensive simulations and real-world experiments, demonstrating notable improvements in avoidance success rates, energy efficiency, and robustness to fast-moving obstacles. Videos and appendix are available on https://rebot-2025.github.io/.
Abstract:Tactile feedback is generally recognized to be crucial for effective interaction with the physical world. However, state-of-the-art Vision-Language-Action (VLA) models lack the ability to interpret and use tactile signals, limiting their effectiveness in contact-rich tasks. Incorporating tactile feedback into these systems is challenging due to the absence of large multi-modal datasets. We present VLA-Touch, an approach that enhances generalist robot policies with tactile sensing \emph{without fine-tuning} the base VLA. Our method introduces two key innovations: (1) a pipeline that leverages a pretrained tactile-language model that provides semantic tactile feedback for high-level task planning, and (2) a diffusion-based controller that refines VLA-generated actions with tactile signals for contact-rich manipulation. Through real-world experiments, we demonstrate that our dual-level integration of tactile feedback improves task planning efficiency while enhancing execution precision. Code is open-sourced at \href{https://github.com/jxbi1010/VLA-Touch}{this URL}.
Abstract:Articulated object manipulation remains a critical challenge in robotics due to the complex kinematic constraints and the limited physical reasoning of existing methods. In this work, we introduce ArtGS, a novel framework that extends 3D Gaussian Splatting (3DGS) by integrating visual-physical modeling for articulated object understanding and interaction. ArtGS begins with multi-view RGB-D reconstruction, followed by reasoning with a vision-language model (VLM) to extract semantic and structural information, particularly the articulated bones. Through dynamic, differentiable 3DGS-based rendering, ArtGS optimizes the parameters of the articulated bones, ensuring physically consistent motion constraints and enhancing the manipulation policy. By leveraging dynamic Gaussian splatting, cross-embodiment adaptability, and closed-loop optimization, ArtGS establishes a new framework for efficient, scalable, and generalizable articulated object modeling and manipulation. Experiments conducted in both simulation and real-world environments demonstrate that ArtGS significantly outperforms previous methods in joint estimation accuracy and manipulation success rates across a variety of articulated objects. Additional images and videos are available on the project website: https://sites.google.com/view/artgs/home
Abstract:Vision-Language-Action (VLA) models have advanced general-purpose robotic manipulation by leveraging pretrained visual and linguistic representations. However, they struggle with contact-rich tasks that require fine-grained control involving force, especially under visual occlusion or dynamic uncertainty. To address these limitations, we propose \textbf{ForceVLA}, a novel end-to-end manipulation framework that treats external force sensing as a first-class modality within VLA systems. ForceVLA introduces \textbf{FVLMoE}, a force-aware Mixture-of-Experts fusion module that dynamically integrates pretrained visual-language embeddings with real-time 6-axis force feedback during action decoding. This enables context-aware routing across modality-specific experts, enhancing the robot's ability to adapt to subtle contact dynamics. We also introduce \textbf{ForceVLA-Data}, a new dataset comprising synchronized vision, proprioception, and force-torque signals across five contact-rich manipulation tasks. ForceVLA improves average task success by 23.2\% over strong $\pi_0$-based baselines, achieving up to 80\% success in tasks such as plug insertion. Our approach highlights the importance of multimodal integration for dexterous manipulation and sets a new benchmark for physically intelligent robotic control. Code and data will be released at https://sites.google.com/view/forcevla2025.




Abstract:Diffusion-based planners have shown strong performance in short-horizon tasks but often fail in complex, long-horizon settings. We trace the failure to loose coupling between high-level (HL) sub-goal selection and low-level (LL) trajectory generation, which leads to incoherent plans and degraded performance. We propose Coupled Hierarchical Diffusion (CHD), a framework that models HL sub-goals and LL trajectories jointly within a unified diffusion process. A shared classifier passes LL feedback upstream so that sub-goals self-correct while sampling proceeds. This tight HL-LL coupling improves trajectory coherence and enables scalable long-horizon diffusion planning. Experiments across maze navigation, tabletop manipulation, and household environments show that CHD consistently outperforms both flat and hierarchical diffusion baselines. Our website is: https://sites.google.com/view/chd2025/home