Abstract:As we push the boundaries of performance in various vision tasks, the models grow in size correspondingly. To keep up with this growth, we need very aggressive pruning techniques for efficient inference and deployment on edge devices. Existing pruning approaches are limited to channel pruning and struggle with aggressive parameter reductions. In this paper, we propose a novel multi-dimensional pruning framework that jointly optimizes pruning across channels, layers, and blocks while adhering to latency constraints. We develop a latency modeling technique that accurately captures model-wide latency variations during pruning, which is crucial for achieving an optimal latency-accuracy trade-offs at high pruning ratio. We reformulate pruning as a Mixed-Integer Nonlinear Program (MINLP) to efficiently determine the optimal pruned structure with only a single pass. Our extensive results demonstrate substantial improvements over previous methods, particularly at large pruning ratios. In classification, our method significantly outperforms prior art HALP with a Top-1 accuracy of 70.0(v.s. 68.6) and an FPS of 5262 im/s(v.s. 4101 im/s). In 3D object detection, we establish a new state-of-the-art by pruning StreamPETR at a 45% pruning ratio, achieving higher FPS (37.3 vs. 31.7) and mAP (0.451 vs. 0.449) than the dense baseline.
Abstract:Classification-regression prediction networks have realized impressive success in several modern deep trackers. However, there is an inherent difference between classification and regression tasks, so they have diverse even opposite demands for feature matching. Existed models always ignore the key issue and only employ a unified matching block in two task branches, decaying the decision quality. Besides, these models also struggle with decision misalignment situation. In this paper, we propose a multi-attention associate prediction network (MAPNet) to tackle the above problems. Concretely, two novel matchers, i.e., category-aware matcher and spatial-aware matcher, are first designed for feature comparison by integrating self, cross, channel or spatial attentions organically. They are capable of fully capturing the category-related semantics for classification and the local spatial contexts for regression, respectively. Then, we present a dual alignment module to enhance the correspondences between two branches, which is useful to find the optimal tracking solution. Finally, we describe a Siamese tracker built upon the proposed prediction network, which achieves the leading performance on five tracking benchmarks, consisting of LaSOT, TrackingNet, GOT-10k, TNL2k and UAV123, and surpasses other state-of-the-art approaches.
Abstract:Given the difficulty of manually annotating motion in video, the current best motion estimation methods are trained with synthetic data, and therefore struggle somewhat due to a train/test gap. Self-supervised methods hold the promise of training directly on real video, but typically perform worse. These include methods trained with warp error (i.e., color constancy) combined with smoothness terms, and methods that encourage cycle-consistency in the estimates (i.e., tracking backwards should yield the opposite trajectory as tracking forwards). In this work, we take on the challenge of improving state-of-the-art supervised models with self-supervised training. We find that when the initialization is supervised weights, most existing self-supervision techniques actually make performance worse instead of better, which suggests that the benefit of seeing the new data is overshadowed by the noise in the training signal. Focusing on obtaining a ``clean'' training signal from real-world unlabelled video, we propose to separate label-making and training into two distinct stages. In the first stage, we use the pre-trained model to estimate motion in a video, and then select the subset of motion estimates which we can verify with cycle-consistency. This produces a sparse but accurate pseudo-labelling of the video. In the second stage, we fine-tune the model to reproduce these outputs, while also applying augmentations on the input. We complement this boot-strapping method with simple techniques that densify and re-balance the pseudo-labels, ensuring that we do not merely train on ``easy'' tracks. We show that our method yields reliable gains over fully-supervised methods in real videos, for both short-term (flow-based) and long-range (multi-frame) pixel tracking.
Abstract:Depth completion, which aims to generate high-quality dense depth maps from sparse depth maps, has attracted increasing attention in recent years. Previous work usually employs RGB images as guidance, and introduces iterative spatial propagation to refine estimated coarse depth maps. However, most of the propagation refinement methods require several iterations and suffer from a fixed receptive field, which may contain irrelevant and useless information with very sparse input. In this paper, we address these two challenges simultaneously by revisiting the idea of deformable convolution. We propose an effective architecture that leverages deformable kernel convolution as a single-pass refinement module, and empirically demonstrate its superiority. To better understand the function of deformable convolution and exploit it for depth completion, we further systematically investigate a variety of representative strategies. Our study reveals that, different from prior work, deformable convolution needs to be applied on an estimated depth map with a relatively high density for better performance. We evaluate our model on the large-scale KITTI dataset and achieve state-of-the-art level performance in both accuracy and inference speed. Our code is available at https://github.com/AlexSunNik/ReDC.
Abstract:In this paper, we investigate whether we could use pruning as a reliable method to boost the generalization ability of the model. We found that existing pruning method like L2 can already offer small improvement on the target domain performance. We further propose a novel pruning scoring method, called DSS, designed not to maintain source accuracy as typical pruning work, but to directly enhance the robustness of the model. We conduct empirical experiments to validate our method and demonstrate that it can be even combined with state-of-the-art generalization work like MIRO(Cha et al., 2022) to further boost the performance. On MNIST to MNIST-M, we could improve the baseline performance by over 5 points by introducing 60% channel sparsity into the model. On DomainBed benchmark and state-of-the-art MIRO, we can further boost its performance by 1 point only by introducing 10% sparsity into the model. Code can be found at: https://github.com/AlexSunNik/Pruning-for-Better-Domain-Generalizability
Abstract:Despite the popularity of Model Compression and Multitask Learning, how to effectively compress a multitask model has been less thoroughly analyzed due to the challenging entanglement of tasks in the parameter space. In this paper, we propose DiSparse, a simple, effective, and first-of-its-kind multitask pruning and sparse training scheme. We consider each task independently by disentangling the importance measurement and take the unanimous decisions among all tasks when performing parameter pruning and selection. Our experimental results demonstrate superior performance on various configurations and settings compared to popular sparse training and pruning methods. Besides the effectiveness in compression, DiSparse also provides a powerful tool to the multitask learning community. Surprisingly, we even observed better performance than some dedicated multitask learning methods in several cases despite the high model sparsity enforced by DiSparse. We analyzed the pruning masks generated with DiSparse and observed strikingly similar sparse network architecture identified by each task even before the training starts. We also observe the existence of a "watershed" layer where the task relatedness sharply drops, implying no benefits in continued parameters sharing. Our code and models will be available at: https://github.com/SHI-Labs/DiSparse-Multitask-Model-Compression.
Abstract:Offline Siamese networks have achieved very promising tracking performance, especially in accuracy and efficiency. However, they often fail to track an object in complex scenes due to the incapacity in online update. Traditional updaters are difficult to process the irregular variations and sampling noises of objects, so it is quite risky to adopt them to update Siamese networks. In this paper, we first present a two-stage one-shot learner, which can predict the local parameters of primary classifier with object samples from diverse stages. Then, an updatable Siamese network is proposed based on the learner (SiamTOL), which is able to complement online update by itself. Concretely, we introduce an extra inputting branch to sequentially capture the latest object features, and design a residual module to update the initial exemplar using these features. Besides, an effective multi-aspect training loss is designed for our network to avoid overfit. Extensive experimental results on several popular benchmarks including OTB100, VOT2018, VOT2019, LaSOT, UAV123 and GOT10k manifest that the proposed tracker achieves the leading performance and outperforms other state-of-the-art methods
Abstract:The goal of blind image deblurring is to recover sharp image from one input blurred image with an unknown blur kernel. Most of image deblurring approaches focus on developing image priors, however, there is not enough attention to the influence of image details and structures on the blur kernel estimation. What is the useful image structure and how to choose a good deblurring region? In this work, we propose a deep neural network model method for selecting good regions to estimate blur kernel. First we construct image patches with labels and train a deep neural networks, then the learned model is applied to determine which region of the image is most suitable to deblur. Experimental results illustrate that the proposed approach is effective, and could be able to select good regions for image deblurring.