Abstract:Robustness to out-of-distribution data is crucial for deploying modern neural networks. Recently, Vision Transformers, such as SegFormer for semantic segmentation, have shown impressive robustness to visual corruptions like blur or noise affecting the acquisition device. In this paper, we propose Channel Wise Feature Augmentation (CWFA), a simple yet efficient feature augmentation technique to improve the robustness of Vision Transformers for semantic segmentation. CWFA applies a globally estimated perturbation per encoder with minimal compute overhead during training. Extensive evaluations on Cityscapes and ADE20K, with three state-of-the-art Vision Transformer architectures : SegFormer, Swin Transformer, and Twins demonstrate that CWFA-enhanced models significantly improve robustness without affecting clean data performance. For instance, on Cityscapes, a CWFA-augmented SegFormer-B1 model yields up to 27.7% mIoU robustness gain on impulse noise compared to the non-augmented SegFormer-B1. Furthermore, CWFA-augmented SegFormer-B5 achieves a new state-of-the-art 84.3% retention rate, a 0.7% improvement over the recently published FAN+STL.
Abstract:3D object detection is an essential task for computer vision applications in autonomous vehicles and robotics. However, models often struggle to quantify detection reliability, leading to poor performance on unfamiliar scenes. We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector. These uncertainty estimates require minimal computational overhead and are generalizable across different architectures. We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections; our framework consistently improves over baselines by 10-20% on average. Finally, we integrate this suite of tasks into a system where a 3D object detector auto-labels driving scenes and our uncertainty estimates verify label correctness before the labels are used to train a second model. Here, our uncertainty-driven verification results in a 1% improvement in mAP and a 1-2% improvement in NDS.
Abstract:In recent years, the data collected for artificial intelligence has grown to an unmanageable amount. Particularly within industrial applications, such as autonomous vehicles, model training computation budgets are being exceeded while model performance is saturating -- and yet more data continues to pour in. To navigate the flood of data, we propose a framework to select the most semantically diverse and important dataset portion. Then, we further semantically enrich it by discovering meaningful new data from a massive unlabeled data pool. Importantly, we can provide explainability by leveraging foundation models to generate semantics for every data point. We quantitatively show that our Semantic Selection and Enrichment framework (SSE) can a) successfully maintain model performance with a smaller training dataset and b) improve model performance by enriching the smaller dataset without exceeding the original dataset size. Consequently, we demonstrate that semantic diversity is imperative for optimal data selection and model performance.
Abstract:The cornerstone of autonomous vehicles (AV) is a solid perception system, where camera encoders play a crucial role. Existing works usually leverage pre-trained Convolutional Neural Networks (CNN) or Vision Transformers (ViTs) designed for general vision tasks, such as image classification, segmentation, and 2D detection. Although those well-known architectures have achieved state-of-the-art accuracy in AV-related tasks, e.g., 3D Object Detection, there remains significant potential for improvement in network design due to the nuanced complexities of industrial-level AV dataset. Moreover, existing public AV benchmarks usually contain insufficient data, which might lead to inaccurate evaluation of those architectures.To reveal the AV-specific model insights, we start from a standard general-purpose encoder, ConvNeXt and progressively transform the design. We adjust different design parameters including width and depth of the model, stage compute ratio, attention mechanisms, and input resolution, supported by systematic analysis to each modifications. This customization yields an architecture optimized for AV camera encoder achieving 8.79% mAP improvement over the baseline. We believe our effort could become a sweet cookbook of image encoders for AV and pave the way to the next-level drive system.
Abstract:We propose Hydra-MDP, a novel paradigm employing multiple teachers in a teacher-student model. This approach uses knowledge distillation from both human and rule-based teachers to train the student model, which features a multi-head decoder to learn diverse trajectory candidates tailored to various evaluation metrics. With the knowledge of rule-based teachers, Hydra-MDP learns how the environment influences the planning in an end-to-end manner instead of resorting to non-differentiable post-processing. This method achieves the $1^{st}$ place in the Navsim challenge, demonstrating significant improvements in generalization across diverse driving environments and conditions. Code will be available at \url{https://github.com/woxihuanjiangguo/Hydra-MDP}
Abstract:Data often arrives in sequence over time in real-world deep learning applications such as autonomous driving. When new training data is available, training the model from scratch undermines the benefit of leveraging the learned knowledge, leading to significant training costs. Warm-starting from a previously trained checkpoint is the most intuitive way to retain knowledge and advance learning. However, existing literature suggests that this warm-starting degrades generalization. In this paper, we advocate for warm-starting but stepping out of the previous converging point, thus allowing a better adaptation to new data without compromising previous knowledge. We propose Knowledge Consolidation and Acquisition (CKCA), a continuous model improvement algorithm with two novel components. First, a novel feature regularization (FeatReg) to retain and refine knowledge from existing checkpoints; Second, we propose adaptive knowledge distillation (AdaKD), a novel approach to forget mitigation and knowledge transfer. We tested our method on ImageNet using multiple splits of the training data. Our approach achieves up to $8.39\%$ higher top1 accuracy than the vanilla warm-starting and consistently outperforms the prior art with a large margin.
Abstract:Humans naturally retain memories of permanent elements, while ephemeral moments often slip through the cracks of memory. This selective retention is crucial for robotic perception, localization, and mapping. To endow robots with this capability, we introduce 3D Gaussian Mapping (3DGM), a self-supervised, camera-only offline mapping framework grounded in 3D Gaussian Splatting. 3DGM converts multitraverse RGB videos from the same region into a Gaussian-based environmental map while concurrently performing 2D ephemeral object segmentation. Our key observation is that the environment remains consistent across traversals, while objects frequently change. This allows us to exploit self-supervision from repeated traversals to achieve environment-object decomposition. More specifically, 3DGM formulates multitraverse environmental mapping as a robust differentiable rendering problem, treating pixels of the environment and objects as inliers and outliers, respectively. Using robust feature distillation, feature residuals mining, and robust optimization, 3DGM jointly performs 2D segmentation and 3D mapping without human intervention. We build the Mapverse benchmark, sourced from the Ithaca365 and nuPlan datasets, to evaluate our method in unsupervised 2D segmentation, 3D reconstruction, and neural rendering. Extensive results verify the effectiveness and potential of our method for self-driving and robotics.
Abstract:Causal reasoning, in particular, counterfactual reasoning plays a central role in testing for discrimination. Counterfactual reasoning materializes when testing for discrimination, what is known as the counterfactual model of discrimination, when we compare the discrimination comparator with the discrimination complainant, where the comparator is a similar (or similarly situated) profile to that of the complainant used for testing the discrimination claim of the complainant. In this paper, we revisit the comparator by presenting two kinds of comparators based on the sort of causal intervention we want to represent. We present the ceteris paribus and the mutatis mutandis comparator, where the former is the standard and the latter is a new kind of comparator. We argue for the use of the mutatis mutandis comparator, which is built on the fairness given the difference notion, for testing future algorithmic discrimination cases.
Abstract:The advances in multimodal large language models (MLLMs) have led to growing interests in LLM-based autonomous driving agents to leverage their strong reasoning capabilities. However, capitalizing on MLLMs' strong reasoning capabilities for improved planning behavior is challenging since planning requires full 3D situational awareness beyond 2D reasoning. To address this challenge, our work proposes a holistic framework for strong alignment between agent models and 3D driving tasks. Our framework starts with a novel 3D MLLM architecture that uses sparse queries to lift and compress visual representations into 3D before feeding them into an LLM. This query-based representation allows us to jointly encode dynamic objects and static map elements (e.g., traffic lanes), providing a condensed world model for perception-action alignment in 3D. We further propose OmniDrive-nuScenes, a new visual question-answering dataset challenging the true 3D situational awareness of a model with comprehensive visual question-answering (VQA) tasks, including scene description, traffic regulation, 3D grounding, counterfactual reasoning, decision making and planning. Extensive studies show the effectiveness of the proposed architecture as well as the importance of the VQA tasks for reasoning and planning in complex 3D scenes.
Abstract:This paper focuses on self-supervised monocular depth estimation in dynamic scenes trained on monocular videos. Existing methods jointly estimate pixel-wise depth and motion, relying mainly on an image reconstruction loss. Dynamic regions1 remain a critical challenge for these methods due to the inherent ambiguity in depth and motion estimation, resulting in inaccurate depth estimation. This paper proposes a self-supervised training framework exploiting pseudo depth labels for dynamic regions from training data. The key contribution of our framework is to decouple depth estimation for static and dynamic regions of images in the training data. We start with an unsupervised depth estimation approach, which provides reliable depth estimates for static regions and motion cues for dynamic regions and allows us to extract moving object information at the instance level. In the next stage, we use an object network to estimate the depth of those moving objects assuming rigid motions. Then, we propose a new scale alignment module to address the scale ambiguity between estimated depths for static and dynamic regions. We can then use the depth labels generated to train an end-to-end depth estimation network and improve its performance. Extensive experiments on the Cityscapes and KITTI datasets show that our self-training strategy consistently outperforms existing self/unsupervised depth estimation methods.