Abstract:We propose Hydra-MDP, a novel paradigm employing multiple teachers in a teacher-student model. This approach uses knowledge distillation from both human and rule-based teachers to train the student model, which features a multi-head decoder to learn diverse trajectory candidates tailored to various evaluation metrics. With the knowledge of rule-based teachers, Hydra-MDP learns how the environment influences the planning in an end-to-end manner instead of resorting to non-differentiable post-processing. This method achieves the $1^{st}$ place in the Navsim challenge, demonstrating significant improvements in generalization across diverse driving environments and conditions. Code will be available at \url{https://github.com/woxihuanjiangguo/Hydra-MDP}
Abstract:Recently, the rise of query-based Transformer decoders is reshaping camera-based 3D object detection. These query-based decoders are surpassing the traditional dense BEV (Bird's Eye View)-based methods. However, we argue that dense BEV frameworks remain important due to their outstanding abilities in depth estimation and object localization, depicting 3D scenes accurately and comprehensively. This paper aims to address the drawbacks of the existing dense BEV-based 3D object detectors by introducing our proposed enhanced components, including a CRF-modulated depth estimation module enforcing object-level consistencies, a long-term temporal aggregation module with extended receptive fields, and a two-stage object decoder combining perspective techniques with CRF-modulated depth embedding. These enhancements lead to a "modernized" dense BEV framework dubbed BEVNeXt. On the nuScenes benchmark, BEVNeXt outperforms both BEV-based and query-based frameworks under various settings, achieving a state-of-the-art result of 64.2 NDS on the nuScenes test set.
Abstract:Online media data, in the forms of images and videos, are becoming mainstream communication channels. However, recent advances in deep learning, particularly deep generative models, open the doors for producing perceptually convincing images and videos at a low cost, which not only poses a serious threat to the trustworthiness of digital information but also has severe societal implications. This motivates a growing interest of research in media tampering detection, i.e., using deep learning techniques to examine whether media data have been maliciously manipulated. Depending on the content of the targeted images, media forgery could be divided into image tampering and Deepfake techniques. The former typically moves or erases the visual elements in ordinary images, while the latter manipulates the expressions and even the identity of human faces. Accordingly, the means of defense include image tampering detection and Deepfake detection, which share a wide variety of properties. In this paper, we provide a comprehensive review of the current media tampering detection approaches, and discuss the challenges and trends in this field for future research.