Abstract:Track Mapless demands models to process multi-view images and Standard-Definition (SD) maps, outputting lane and traffic element perceptions along with their topological relationships. We propose a novel architecture that integrates SD map priors to improve lane line and area detection performance. Inspired by TopoMLP, our model employs a two-stage structure: perception and reasoning. The downstream topology head uses the output from the upstream detection head, meaning accuracy improvements in detection significantly boost downstream performance.
Abstract:We propose Hydra-MDP, a novel paradigm employing multiple teachers in a teacher-student model. This approach uses knowledge distillation from both human and rule-based teachers to train the student model, which features a multi-head decoder to learn diverse trajectory candidates tailored to various evaluation metrics. With the knowledge of rule-based teachers, Hydra-MDP learns how the environment influences the planning in an end-to-end manner instead of resorting to non-differentiable post-processing. This method achieves the $1^{st}$ place in the Navsim challenge, demonstrating significant improvements in generalization across diverse driving environments and conditions. Code will be available at \url{https://github.com/woxihuanjiangguo/Hydra-MDP}