Abstract:The trackers based on lightweight neural networks have achieved great success in the field of aerial remote sensing, most of which aggregate multi-stage deep features to lift the tracking quality. However, existing algorithms usually only generate single-stage fusion features for state decision, which ignore that diverse kinds of features are required for identifying and locating the object, limiting the robustness and precision of tracking. In this paper, we propose a novel target-aware Bidirectional Fusion transformer (BFTrans) for UAV tracking. Specifically, we first present a two-stream fusion network based on linear self and cross attentions, which can combine the shallow and the deep features from both forward and backward directions, providing the adjusted local details for location and global semantics for recognition. Besides, a target-aware positional encoding strategy is designed for the above fusion model, which is helpful to perceive the object-related attributes during the fusion phase. Finally, the proposed method is evaluated on several popular UAV benchmarks, including UAV-123, UAV20L and UAVTrack112. Massive experimental results demonstrate that our approach can exceed other state-of-the-art trackers and run with an average speed of 30.5 FPS on embedded platform, which is appropriate for practical drone deployments.
Abstract:Alignment-free sequence analysis approaches provide important alternatives over multiple sequence alignment (MSA) in biological sequence analysis because alignment-free approaches have low computation complexity and are not dependent on high level of sequence identity, however, most of the existing alignment-free methods do not employ true full information content of sequences and thus can not accurately reveal similarities and differences among DNA sequences. We present a novel alignment-free computational method for sequence analysis based on Ramanujan-Fourier transform (RFT), in which complete information of DNA sequences is retained. We represent DNA sequences as four binary indicator sequences and apply RFT on the indicator sequences to convert them into frequency domain. The Euclidean distance of the complete RFT coefficients of DNA sequences are used as similarity measure. To address the different lengths in Euclidean space of RFT coefficients, we pad zeros to short DNA binary sequences so that the binary sequences equal the longest length in the comparison sequence data. Thus, the DNA sequences are compared in the same dimensional frequency space without information loss. We demonstrate the usefulness of the proposed method by presenting experimental results on hierarchical clustering of genes and genomes. The proposed method opens a new channel to biological sequence analysis, classification, and structural module identification.