Abstract:The field of text-to-audio generation has seen significant advancements, and yet the ability to finely control the acoustic characteristics of generated audio remains under-explored. In this paper, we introduce a novel yet simple approach to generate sound effects with control over key acoustic parameters such as loudness, pitch, reverb, fade, brightness, noise and duration, enabling creative applications in sound design and content creation. These parameters extend beyond traditional Digital Signal Processing (DSP) techniques, incorporating learned representations that capture the subtleties of how sound characteristics can be shaped in context, enabling a richer and more nuanced control over the generated audio. Our approach is model-agnostic and is based on learning the disentanglement between audio semantics and its acoustic features. Our approach not only enhances the versatility and expressiveness of text-to-audio generation but also opens new avenues for creative audio production and sound design. Our objective and subjective evaluation results demonstrate the effectiveness of our approach in producing high-quality, customizable audio outputs that align closely with user specifications.
Abstract:We present Sketch2Sound, a generative audio model capable of creating high-quality sounds from a set of interpretable time-varying control signals: loudness, brightness, and pitch, as well as text prompts. Sketch2Sound can synthesize arbitrary sounds from sonic imitations (i.e.,~a vocal imitation or a reference sound-shape). Sketch2Sound can be implemented on top of any text-to-audio latent diffusion transformer (DiT), and requires only 40k steps of fine-tuning and a single linear layer per control, making it more lightweight than existing methods like ControlNet. To synthesize from sketchlike sonic imitations, we propose applying random median filters to the control signals during training, allowing Sketch2Sound to be prompted using controls with flexible levels of temporal specificity. We show that Sketch2Sound can synthesize sounds that follow the gist of input controls from a vocal imitation while retaining the adherence to an input text prompt and audio quality compared to a text-only baseline. Sketch2Sound allows sound artists to create sounds with the semantic flexibility of text prompts and the expressivity and precision of a sonic gesture or vocal imitation. Sound examples are available at https://hugofloresgarcia.art/sketch2sound/.
Abstract:Generating sound effects for videos often requires creating artistic sound effects that diverge significantly from real-life sources and flexible control in the sound design. To address this problem, we introduce MultiFoley, a model designed for video-guided sound generation that supports multimodal conditioning through text, audio, and video. Given a silent video and a text prompt, MultiFoley allows users to create clean sounds (e.g., skateboard wheels spinning without wind noise) or more whimsical sounds (e.g., making a lion's roar sound like a cat's meow). MultiFoley also allows users to choose reference audio from sound effects (SFX) libraries or partial videos for conditioning. A key novelty of our model lies in its joint training on both internet video datasets with low-quality audio and professional SFX recordings, enabling high-quality, full-bandwidth (48kHz) audio generation. Through automated evaluations and human studies, we demonstrate that MultiFoley successfully generates synchronized high-quality sounds across varied conditional inputs and outperforms existing methods. Please see our project page for video results: https://ificl.github.io/MultiFoley/
Abstract:Neural codecs have demonstrated strong performance in high-fidelity compression of audio signals at low bitrates. The token-based representations produced by these codecs have proven particularly useful for generative modeling. While much research has focused on improvements in compression ratio and perceptual transparency, recent works have largely overlooked another desirable codec property -- idempotence, the stability of compressed outputs under multiple rounds of encoding. We find that state-of-the-art neural codecs exhibit varied degrees of idempotence, with some degrading audio outputs significantly after as few as three encodings. We investigate possible causes of low idempotence and devise a method for improving idempotence through fine-tuning a codec model. We then examine the effect of idempotence on a simple conditional generative modeling task, and find that increased idempotence can be achieved without negatively impacting downstream modeling performance -- potentially extending the usefulness of neural codecs for practical file compression and iterative generative modeling workflows.
Abstract:We introduce VampNet, a masked acoustic token modeling approach to music synthesis, compression, inpainting, and variation. We use a variable masking schedule during training which allows us to sample coherent music from the model by applying a variety of masking approaches (called prompts) during inference. VampNet is non-autoregressive, leveraging a bidirectional transformer architecture that attends to all tokens in a forward pass. With just 36 sampling passes, VampNet can generate coherent high-fidelity musical waveforms. We show that by prompting VampNet in various ways, we can apply it to tasks like music compression, inpainting, outpainting, continuation, and looping with variation (vamping). Appropriately prompted, VampNet is capable of maintaining style, genre, instrumentation, and other high-level aspects of the music. This flexible prompting capability makes VampNet a powerful music co-creation tool. Code and audio samples are available online.
Abstract:Language models have been successfully used to model natural signals, such as images, speech, and music. A key component of these models is a high quality neural compression model that can compress high-dimensional natural signals into lower dimensional discrete tokens. To that end, we introduce a high-fidelity universal neural audio compression algorithm that achieves ~90x compression of 44.1 KHz audio into tokens at just 8kbps bandwidth. We achieve this by combining advances in high-fidelity audio generation with better vector quantization techniques from the image domain, along with improved adversarial and reconstruction losses. We compress all domains (speech, environment, music, etc.) with a single universal model, making it widely applicable to generative modeling of all audio. We compare with competing audio compression algorithms, and find our method outperforms them significantly. We provide thorough ablations for every design choice, as well as open-source code and trained model weights. We hope our work can lay the foundation for the next generation of high-fidelity audio modeling.
Abstract:Despite phenomenal progress in recent years, state-of-the-art music separation systems produce source estimates with significant perceptual shortcomings, such as adding extraneous noise or removing harmonics. We propose a post-processing model (the Make it Sound Good (MSG) post-processor) to enhance the output of music source separation systems. We apply our post-processing model to state-of-the-art waveform-based and spectrogram-based music source separators, including a separator unseen by MSG during training. Our analysis of the errors produced by source separators shows that waveform models tend to introduce more high-frequency noise, while spectrogram models tend to lose transients and high frequency content. We introduce objective measures to quantify both kinds of errors and show MSG improves the source reconstruction of both kinds of errors. Crowdsourced subjective evaluations demonstrate that human listeners prefer source estimates of bass and drums that have been post-processed by MSG.
Abstract:Localizing visual sounds consists on locating the position of objects that emit sound within an image. It is a growing research area with potential applications in monitoring natural and urban environments, such as wildlife migration and urban traffic. Previous works are usually evaluated with datasets having mostly a single dominant visible object, and proposed models usually require the introduction of localization modules during training or dedicated sampling strategies, but it remains unclear how these design choices play a role in the adaptability of these methods in more challenging scenarios. In this work, we analyze various model choices for visual sound localization and discuss how their different components affect the model's performance, namely the encoders' architecture, the loss function and the localization strategy. Furthermore, we study the interaction between these decisions, the model performance, and the data, by digging into different evaluation datasets spanning different difficulties and characteristics, and discuss the implications of such decisions in the context of real-world applications. Our code and model weights are open-sourced and made available for further applications.
Abstract:We showcase an unsupervised method that repurposes deep models trained for music generation and music tagging for audio source separation, without any retraining. An audio generation model is conditioned on an input mixture, producing a latent encoding of the audio used to generate audio. This generated audio is fed to a pretrained music tagger that creates source labels. The cross-entropy loss between the tag distribution for the generated audio and a predefined distribution for an isolated source is used to guide gradient ascent in the (unchanging) latent space of the generative model. This system does not update the weights of the generative model or the tagger, and only relies on moving through the generative model's latent space to produce separated sources. We use OpenAI's Jukebox as the pretrained generative model, and we couple it with four kinds of pretrained music taggers (two architectures and two tagging datasets). Experimental results on two source separation datasets, show this approach can produce separation estimates for a wider variety of sources than any tested supervised or unsupervised system. This work points to the vast and heretofore untapped potential of large pretrained music models for audio-to-audio tasks like source separation.
Abstract:We propose Wav2CLIP, a robust audio representation learning method by distilling from Contrastive Language-Image Pre-training (CLIP). We systematically evaluate Wav2CLIP on a variety of audio tasks including classification, retrieval, and generation, and show that Wav2CLIP can outperform several publicly available pre-trained audio representation algorithms. Wav2CLIP projects audio into a shared embedding space with images and text, which enables multimodal applications such as zero-shot classification, and cross-modal retrieval. Furthermore, Wav2CLIP needs just ~10% of the data to achieve competitive performance on downstream tasks compared with fully supervised models, and is more efficient to pre-train than competing methods as it does not require learning a visual model in concert with an auditory model. Finally, we demonstrate image generation from Wav2CLIP as qualitative assessment of the shared embedding space. Our code and model weights are open sourced and made available for further applications.