Abstract:Neural codecs have demonstrated strong performance in high-fidelity compression of audio signals at low bitrates. The token-based representations produced by these codecs have proven particularly useful for generative modeling. While much research has focused on improvements in compression ratio and perceptual transparency, recent works have largely overlooked another desirable codec property -- idempotence, the stability of compressed outputs under multiple rounds of encoding. We find that state-of-the-art neural codecs exhibit varied degrees of idempotence, with some degrading audio outputs significantly after as few as three encodings. We investigate possible causes of low idempotence and devise a method for improving idempotence through fine-tuning a codec model. We then examine the effect of idempotence on a simple conditional generative modeling task, and find that increased idempotence can be achieved without negatively impacting downstream modeling performance -- potentially extending the usefulness of neural codecs for practical file compression and iterative generative modeling workflows.
Abstract:Achieving robust speech separation for overlapping speakers in various acoustic environments with noise and reverberation remains an open challenge. Although existing datasets are available to train separators for specific scenarios, they do not effectively generalize across diverse real-world scenarios. In this paper, we present a novel data simulation pipeline that produces diverse training data from a range of acoustic environments and content, and propose new training paradigms to improve quality of a general speech separation model. Specifically, we first introduce AC-SIM, a data simulation pipeline that incorporates broad variations in both content and acoustics. Then we integrate multiple training objectives into the permutation invariant training (PIT) to enhance separation quality and generalization of the trained model. Finally, we conduct comprehensive objective and human listening experiments across separation architectures and benchmarks to validate our methods, demonstrating substantial improvement of generalization on both non-homologous and real-world test sets.
Abstract:As a cross-modal task, visual storytelling aims to generate a story for an ordered image sequence automatically. Different from the image captioning task, visual storytelling requires not only modeling the relationships between objects in the image but also mining the connections between adjacent images. Recent approaches primarily utilize either end-to-end frameworks or multi-stage frameworks to generate relevant stories, but they usually overlook latent topic information. In this paper, in order to generate a more coherent and relevant story, we propose a novel method, Topic Aware Reinforcement Network for VIsual StoryTelling (TARN-VIST). In particular, we pre-extracted the topic information of stories from both visual and linguistic perspectives. Then we apply two topic-consistent reinforcement learning rewards to identify the discrepancy between the generated story and the human-labeled story so as to refine the whole generation process. Extensive experimental results on the VIST dataset and human evaluation demonstrate that our proposed model outperforms most of the competitive models across multiple evaluation metrics.
Abstract:Real-world audio recordings are often degraded by factors such as noise, reverberation, and equalization distortion. This paper introduces HiFi-GAN, a deep learning method to transform recorded speech to sound as though it had been recorded in a studio. We use an end-to-end feed-forward WaveNet architecture, trained with multi-scale adversarial discriminators in both the time domain and the time-frequency domain. It relies on the deep feature matching losses of the discriminators to improve the perceptual quality of enhanced speech. The proposed model generalizes well to new speakers, new speech content, and new environments. It significantly outperforms state-of-the-art baseline methods in both objective and subjective experiments.