Abstract:Spiking Neural Networks (SNNs) aim to bridge the gap between neuroscience and machine learning by emulating the structure of the human nervous system. However, like convolutional neural networks, SNNs are vulnerable to adversarial attacks. To tackle the challenge, we propose a biologically inspired methodology to enhance the robustness of SNNs, drawing insights from the visual masking effect and filtering theory. First, an end-to-end SNN-based image purification model is proposed to defend against adversarial attacks, including a noise extraction network and a non-blind denoising network. The former network extracts noise features from noisy images, while the latter component employs a residual U-Net structure to reconstruct high-quality noisy images and generate clean images. Simultaneously, a multi-level firing SNN based on Squeeze-and-Excitation Network is introduced to improve the robustness of the classifier. Crucially, the proposed image purification network serves as a pre-processing module, avoiding modifications to classifiers. Unlike adversarial training, our method is highly flexible and can be seamlessly integrated with other defense strategies. Experimental results on various datasets demonstrate that the proposed methodology outperforms state-of-the-art baselines in terms of defense effectiveness, training time, and resource consumption.
Abstract:As a cross-modal task, visual storytelling aims to generate a story for an ordered image sequence automatically. Different from the image captioning task, visual storytelling requires not only modeling the relationships between objects in the image but also mining the connections between adjacent images. Recent approaches primarily utilize either end-to-end frameworks or multi-stage frameworks to generate relevant stories, but they usually overlook latent topic information. In this paper, in order to generate a more coherent and relevant story, we propose a novel method, Topic Aware Reinforcement Network for VIsual StoryTelling (TARN-VIST). In particular, we pre-extracted the topic information of stories from both visual and linguistic perspectives. Then we apply two topic-consistent reinforcement learning rewards to identify the discrepancy between the generated story and the human-labeled story so as to refine the whole generation process. Extensive experimental results on the VIST dataset and human evaluation demonstrate that our proposed model outperforms most of the competitive models across multiple evaluation metrics.