Abstract:We introduce motion graph, a novel approach to the video prediction problem, which predicts future video frames from limited past data. The motion graph transforms patches of video frames into interconnected graph nodes, to comprehensively describe the spatial-temporal relationships among them. This representation overcomes the limitations of existing motion representations such as image differences, optical flow, and motion matrix that either fall short in capturing complex motion patterns or suffer from excessive memory consumption. We further present a video prediction pipeline empowered by motion graph, exhibiting substantial performance improvements and cost reductions. Experiments on various datasets, including UCF Sports, KITTI and Cityscapes, highlight the strong representative ability of motion graph. Especially on UCF Sports, our method matches and outperforms the SOTA methods with a significant reduction in model size by 78% and a substantial decrease in GPU memory utilization by 47%.
Abstract:Post-training is essential for enabling large language models (LLMs) to follow human instructions. Inspired by the recent success of using LLMs to simulate human society, we leverage multi-agent simulation to automatically generate diverse text-based scenarios, capturing a wide range of real-world human needs. We propose MATRIX, a multi-agent simulator that creates realistic and scalable scenarios. Leveraging these outputs, we introduce a novel scenario-driven instruction generator MATRIX-Gen for controllable and highly realistic data synthesis. Extensive experiments demonstrate that our framework effectively generates both general and domain-specific data. Notably, on AlpacaEval 2 and Arena-Hard benchmarks, Llama-3-8B-Base, post-trained on datasets synthesized by MATRIX-Gen with just 20K instruction-response pairs, outperforms Meta's Llama-3-8B-Instruct model, which was trained on over 10M pairs; see our project at https://github.com/ShuoTang123/MATRIX-Gen.
Abstract:Hypergraphs, with hyperedges connecting more than two nodes, are key for modelling higher-order interactions in real-world data. The success of graph neural networks (GNNs) reveals the capability of neural networks to process data with pairwise interactions. This inspires the usage of neural networks for data with higher-order interactions, thereby leading to the development of hypergraph neural networks (HyperGNNs). GNNs and HyperGNNs are typically considered distinct since they are designed for data on different geometric topologies. However, in this paper, we theoretically demonstrate that, in the context of node classification, most HyperGNNs can be approximated using a GNN with a weighted clique expansion of the hypergraph. This leads to WCE-GNN, a simple and efficient framework comprising a GNN and a weighted clique expansion (WCE), for hypergraph node classification. Experiments on nine real-world hypergraph node classification benchmarks showcase that WCE-GNN demonstrates not only higher classification accuracy compared to state-of-the-art HyperGNNs, but also superior memory and runtime efficiency.
Abstract:Hypergraphs play a pivotal role in the modelling of data featuring higher-order relations involving more than two entities. Hypergraph neural networks emerge as a powerful tool for processing hypergraph-structured data, delivering remarkable performance across various tasks, e.g., hypergraph node classification. However, these models struggle to capture global structural information due to their reliance on local message passing. To address this challenge, we propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT). HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges. To incorporate local structural information, HyperGT has two distinct designs: i) a positional encoding based on the hypergraph incidence matrix, offering valuable insights into node-node and hyperedge-hyperedge interactions; and ii) a hypergraph structure regularization in the loss function, capturing connectivities between nodes and hyperedges. Through these designs, HyperGT achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns. Extensive experiments conducted on real-world hypergraph node classification tasks showcase that HyperGT consistently outperforms existing methods, establishing new state-of-the-art benchmarks. Ablation studies affirm the effectiveness of the individual designs of our model.
Abstract:Hypergraphs are vital in modelling data with higher-order relations containing more than two entities, gaining prominence in machine learning and signal processing. Many hypergraph neural networks leverage message passing over hypergraph structures to enhance node representation learning, yielding impressive performances in tasks like hypergraph node classification. However, these message-passing-based models face several challenges, including oversmoothing as well as high latency and sensitivity to structural perturbations at inference time. To tackle those challenges, we propose an alternative approach where we integrate the information about hypergraph structures into training supervision without explicit message passing, thus also removing the reliance on it at inference. Specifically, we introduce Hypergraph-MLP, a novel learning framework for hypergraph-structured data, where the learning model is a straightforward multilayer perceptron (MLP) supervised by a loss function based on a notion of signal smoothness on hypergraphs. Experiments on hypergraph node classification tasks demonstrate that Hypergraph-MLP achieves competitive performance compared to existing baselines, and is considerably faster and more robust against structural perturbations at inference.
Abstract:Hypergraphs are important for processing data with higher-order relationships involving more than two entities. In scenarios where explicit hypergraphs are not readily available, it is desirable to infer a meaningful hypergraph structure from the node features to capture the intrinsic relations within the data. However, existing methods either adopt simple pre-defined rules that fail to precisely capture the distribution of the potential hypergraph structure, or learn a mapping between hypergraph structures and node features but require a large amount of labelled data, i.e., pre-existing hypergraph structures, for training. Both restrict their applications in practical scenarios. To fill this gap, we propose a novel smoothness prior that enables us to design a method to infer the probability for each potential hyperedge without labelled data as supervision. The proposed prior indicates features of nodes in a hyperedge are highly correlated by the features of the hyperedge containing them. We use this prior to derive the relation between the hypergraph structure and the node features via probabilistic modelling. This allows us to develop an unsupervised inference method to estimate the probability for each potential hyperedge via solving an optimisation problem that has an analytical solution. Experiments on both synthetic and real-world data demonstrate that our method can learn meaningful hypergraph structures from data more efficiently than existing hypergraph structure inference methods.
Abstract:The construction of a meaningful hypergraph topology is the key to processing signals with high-order relationships that involve more than two entities. Learning the hypergraph structure from the observed signals to capture the intrinsic relationships among the entities becomes crucial when a hypergraph topology is not readily available in the datasets. There are two challenges that lie at the heart of this problem: 1) how to handle the huge search space of potential hyperedges, and 2) how to define meaningful criteria to measure the relationship between the signals observed on nodes and the hypergraph structure. In this paper, to address the first challenge, we adopt the assumption that the ideal hypergraph structure can be derived from a learnable graph structure that captures the pairwise relations within signals. Further, we propose a hypergraph learning framework with a novel dual smoothness prior that reveals a mapping between the observed node signals and the hypergraph structure, whereby each hyperedge corresponds to a subgraph with both node signal smoothness and edge signal smoothness in the learnable graph structure. Finally, we conduct extensive experiments to evaluate the proposed framework on both synthetic and real world datasets. Experiments show that our proposed framework can efficiently infer meaningful hypergraph topologies from observed signals.
Abstract:In multi-modal multi-agent trajectory forecasting, two major challenges have not been fully tackled: 1) how to measure the uncertainty brought by the interaction module that causes correlations among the predicted trajectories of multiple agents; 2) how to rank the multiple predictions and select the optimal predicted trajectory. In order to handle these challenges, this work first proposes a novel concept, collaborative uncertainty (CU), which models the uncertainty resulting from interaction modules. Then we build a general CU-aware regression framework with an original permutation-equivariant uncertainty estimator to do both tasks of regression and uncertainty estimation. Further, we apply the proposed framework to current SOTA multi-agent multi-modal forecasting systems as a plugin module, which enables the SOTA systems to 1) estimate the uncertainty in the multi-agent multi-modal trajectory forecasting task; 2) rank the multiple predictions and select the optimal one based on the estimated uncertainty. We conduct extensive experiments on a synthetic dataset and two public large-scale multi-agent trajectory forecasting benchmarks. Experiments show that: 1) on the synthetic dataset, the CU-aware regression framework allows the model to appropriately approximate the ground-truth Laplace distribution; 2) on the multi-agent trajectory forecasting benchmarks, the CU-aware regression framework steadily helps SOTA systems improve their performances. Specially, the proposed framework helps VectorNet improve by 262 cm regarding the Final Displacement Error of the chosen optimal prediction on the nuScenes dataset; 3) for multi-agent multi-modal trajectory forecasting systems, prediction uncertainty is positively correlated with future stochasticity; and 4) the estimated CU values are highly related to the interactive information among agents.
Abstract:Demystifying the interactions among multiple agents from their past trajectories is fundamental to precise and interpretable trajectory prediction. However, previous works mainly consider static, pair-wise interactions with limited relational reasoning. To promote more comprehensive interaction modeling and relational reasoning, we propose DynGroupNet, a dynamic-group-aware network, which can i) model time-varying interactions in highly dynamic scenes; ii) capture both pair-wise and group-wise interactions; and iii) reason both interaction strength and category without direct supervision. Based on DynGroupNet, we further design a prediction system to forecast socially plausible trajectories with dynamic relational reasoning. The proposed prediction system leverages the Gaussian mixture model, multiple sampling and prediction refinement to promote prediction diversity, training stability and trajectory smoothness, respectively. Extensive experiments show that: 1)DynGroupNet can capture time-varying group behaviors, infer time-varying interaction category and interaction strength during trajectory prediction without any relation supervision on physical simulation datasets; 2)DynGroupNet outperforms the state-of-the-art trajectory prediction methods by a significant improvement of 22.6%/28.0%, 26.9%/34.9%, 5.1%/13.0% in ADE/FDE on the NBA, NFL Football and SDD datasets and achieve the state-of-the-art performance on the ETH-UCY dataset.
Abstract:Uncertainty modeling is critical in trajectory forecasting systems for both interpretation and safety reasons. To better predict the future trajectories of multiple agents, recent works have introduced interaction modules to capture interactions among agents. This approach leads to correlations among the predicted trajectories. However, the uncertainty brought by such correlations is neglected. To fill this gap, we propose a novel concept, collaborative uncertainty(CU), which models the uncertainty resulting from the interaction module. We build a general CU-based framework to make a prediction model to learn the future trajectory and the corresponding uncertainty. The CU-based framework is integrated as a plugin module to current state-of-the-art (SOTA) systems and deployed in two special cases based on multivariate Gaussian and Laplace distributions. In each case, we conduct extensive experiments on two synthetic datasets and two public, large-scale benchmarks of trajectory forecasting. The results are promising: 1) The results of synthetic datasets show that CU-based framework allows the model to appropriately approximate the ground-truth distribution. 2) The results of trajectory forecasting benchmarks demonstrate that the CU-based framework steadily helps SOTA systems improve their performances. Especially, the proposed CU-based framework helps VectorNet improve by 57cm regarding Final Displacement Error on nuScenes dataset. 3) The visualization results of CU illustrate that the value of CU is highly related to the amount of the interactive information among agents.