Abstract:Voice conversion aims to convert source speech into a target voice using recordings of the target speaker as a reference. Newer models are producing increasingly realistic output. But what happens when models are fed with non-standard data, such as speech from a user with a speech impairment? We investigate how a recent voice conversion model performs on non-standard downstream voice conversion tasks. We use a simple but robust approach called k-nearest neighbors voice conversion (kNN-VC). We look at four non-standard applications: stuttered voice conversion, cross-lingual voice conversion, musical instrument conversion, and text-to-voice conversion. The latter involves converting to a target voice specified through a text description, e.g. "a young man with a high-pitched voice". Compared to an established baseline, we find that kNN-VC retains high performance in stuttered and cross-lingual voice conversion. Results are more mixed for the musical instrument and text-to-voice conversion tasks. E.g., kNN-VC works well on some instruments like drums but not on others. Nevertheless, this shows that voice conversion models - and kNN-VC in particular - are increasingly applicable in a range of non-standard downstream tasks. But there are still limitations when samples are very far from the training distribution. Code, samples, trained models: https://rf5.github.io/sacair2023-knnvc-demo/.
Abstract:Can we develop a model that can synthesize realistic speech directly from a latent space, without explicit conditioning? Despite several efforts over the last decade, previous adversarial and diffusion-based approaches still struggle to achieve this, even on small-vocabulary datasets. To address this, we propose AudioStyleGAN (ASGAN) -- a generative adversarial network for unconditional speech synthesis tailored to learn a disentangled latent space. Building upon the StyleGAN family of image synthesis models, ASGAN maps sampled noise to a disentangled latent vector which is then mapped to a sequence of audio features so that signal aliasing is suppressed at every layer. To successfully train ASGAN, we introduce a number of new techniques, including a modification to adaptive discriminator augmentation which probabilistically skips discriminator updates. We apply it on the small-vocabulary Google Speech Commands digits dataset, where it achieves state-of-the-art results in unconditional speech synthesis. It is also substantially faster than existing top-performing diffusion models. We confirm that ASGAN's latent space is disentangled: we demonstrate how simple linear operations in the space can be used to perform several tasks unseen during training. Specifically, we perform evaluations in voice conversion, speech enhancement, speaker verification, and keyword classification. Our work indicates that GANs are still highly competitive in the unconditional speech synthesis landscape, and that disentangled latent spaces can be used to aid generalization to unseen tasks. Code, models, samples: https://github.com/RF5/simple-asgan/
Abstract:Any-to-any voice conversion aims to transform source speech into a target voice with just a few examples of the target speaker as a reference. Recent methods produce convincing conversions, but at the cost of increased complexity -- making results difficult to reproduce and build on. Instead, we keep it simple. We propose k-nearest neighbors voice conversion (kNN-VC): a straightforward yet effective method for any-to-any conversion. First, we extract self-supervised representations of the source and reference speech. To convert to the target speaker, we replace each frame of the source representation with its nearest neighbor in the reference. Finally, a pretrained vocoder synthesizes audio from the converted representation. Objective and subjective evaluations show that kNN-VC improves speaker similarity with similar intelligibility scores to existing methods. Code, samples, trained models: https://bshall.github.io/knn-vc
Abstract:Diffusion models have shown exceptional scaling properties in the image synthesis domain, and initial attempts have shown similar benefits for applying diffusion to unconditional text synthesis. Denoising diffusion models attempt to iteratively refine a sampled noise signal until it resembles a coherent signal (such as an image or written sentence). In this work we aim to see whether the benefits of diffusion models can also be realized for speech recognition. To this end, we propose a new way to perform speech recognition using a diffusion model conditioned on pretrained speech features. Specifically, we propose TransFusion: a transcribing diffusion model which iteratively denoises a random character sequence into coherent text corresponding to the transcript of a conditioning utterance. We demonstrate comparable performance to existing high-performing contrastive models on the LibriSpeech speech recognition benchmark. To the best of our knowledge, we are the first to apply denoising diffusion to speech recognition. We also propose new techniques for effectively sampling and decoding multinomial diffusion models. These are required because traditional methods of sampling from acoustic models are not possible with our new discrete diffusion approach. Code and trained models are available: https://github.com/RF5/transfusion-asr
Abstract:We propose AudioStyleGAN (ASGAN), a new generative adversarial network (GAN) for unconditional speech synthesis. As in the StyleGAN family of image synthesis models, ASGAN maps sampled noise to a disentangled latent vector which is then mapped to a sequence of audio features so that signal aliasing is suppressed at every layer. To successfully train ASGAN, we introduce a number of new techniques, including a modification to adaptive discriminator augmentation to probabilistically skip discriminator updates. ASGAN achieves state-of-the-art results in unconditional speech synthesis on the Google Speech Commands dataset. It is also substantially faster than the top-performing diffusion models. Through a design that encourages disentanglement, ASGAN is able to perform voice conversion and speech editing without being explicitly trained to do so. ASGAN demonstrates that GANs are still highly competitive with diffusion models. Code, models, samples: https://github.com/RF5/simple-asgan/.
Abstract:Voice conversion (VC) has been proposed to improve speech recognition systems in low-resource languages by using it to augment limited training data. But until recently, practical issues such as compute speed have limited the use of VC for this purpose. Moreover, it is still unclear whether a VC model trained on one well-resourced language can be applied to speech from another low-resource language for the purpose of data augmentation. In this work we assess whether a VC system can be used cross-lingually to improve low-resource speech recognition. Concretely, we combine several recent techniques to design and train a practical VC system in English, and then use this system to augment data for training a speech recognition model in several low-resource languages. We find that when using a sensible amount of augmented data, speech recognition performance is improved in all four low-resource languages considered.
Abstract:Contrastive predictive coding (CPC) aims to learn representations of speech by distinguishing future observations from a set of negative examples. Previous work has shown that linear classifiers trained on CPC features can accurately predict speaker and phone labels. However, it is unclear how the features actually capture speaker and phonetic information, and whether it is possible to normalize out the irrelevant details (depending on the downstream task). In this paper, we first show that the per-utterance mean of CPC features captures speaker information to a large extent. Concretely, we find that comparing means performs well on a speaker verification task. Next, probing experiments show that standardizing the features effectively removes speaker information. Based on this observation, we propose a speaker normalization step to improve acoustic unit discovery using K-means clustering of CPC features. Finally, we show that a language model trained on the resulting units achieves some of the best results in the ZeroSpeech2021~Challenge.
Abstract:Voice conversion is the task of converting a spoken utterance from a source speaker so that it appears to be said by a different target speaker while retaining the linguistic content of the utterance. Recent advances have led to major improvements in the quality of voice conversion systems. However, to be useful in a wider range of contexts, voice conversion systems would need to be (i) trainable without access to parallel data, (ii) work in a zero-shot setting where both the source and target speakers are unseen during training, and (iii) run in real time or faster. Recent techniques fulfil one or two of these requirements, but not all three. This paper extends recent voice conversion models based on generative adversarial networks (GANs), to satisfy all three of these conditions. We specifically extend the recent StarGAN-VC model by conditioning it on a speaker embedding (from a potentially unseen speaker). This allows the model to be used in a zero-shot setting, and we therefore call it StarGAN-ZSVC. We compare StarGAN-ZSVC against other voice conversion techniques in a low-resource setting using a small 9-minute training set. Compared to AutoVC -- another recent neural zero-shot approach -- we observe that StarGAN-ZSVC gives small improvements in the zero-shot setting, showing that real-time zero-shot voice conversion is possible even for a model trained on very little data. Further work is required to see whether scaling up StarGAN-ZSVC will also improve zero-shot voice conversion quality in high-resource contexts.