Abstract:We develop automatic speech recognition (ASR) systems for stories told by Afrikaans and isiXhosa preschool children. Oral narratives provide a way to assess children's language development before they learn to read. We consider a range of prior child-speech ASR strategies to determine which is best suited to this unique setting. Using Whisper and only 5 minutes of transcribed in-domain child speech, we find that additional in-domain adult data (adult speech matching the story domain) provides the biggest improvement, especially when coupled with voice conversion. Semi-supervised learning also helps for both languages, while parameter-efficient fine-tuning helps on Afrikaans but not on isiXhosa (which is under-represented in the Whisper model). Few child-speech studies look at non-English data, and even fewer at the preschool ages of 4 and 5. Our work therefore represents a unique validation of a wide range of previous child-speech ASR strategies in an under-explored setting.
Abstract:Codec-based text-to-speech (TTS) models have shown impressive quality with zero-shot voice cloning abilities. However, they often struggle with more expressive references or complex text inputs. We present MARS6, a robust encoder-decoder transformer for rapid, expressive TTS. MARS6 is built on recent improvements in spoken language modelling. Utilizing a hierarchical setup for its decoder, new speech tokens are processed at a rate of only 12 Hz, enabling efficient modelling of long-form text while retaining reconstruction quality. We combine several recent training and inference techniques to reduce repetitive generation and improve output stability and quality. This enables the 70M-parameter MARS6 to achieve similar performance to models many times larger. We show this in objective and subjective evaluations, comparing TTS output quality and reference speaker cloning ability. Project page: https://camb-ai.github.io/mars6-turbo/
Abstract:We look at the long-standing problem of segmenting unlabeled speech into word-like segments and clustering these into a lexicon. Several previous methods use a scoring model coupled with dynamic programming to find an optimal segmentation. Here we propose a much simpler strategy: we predict word boundaries using the dissimilarity between adjacent self-supervised features, then we cluster the predicted segments to construct a lexicon. For a fair comparison, we update the older ES-KMeans dynamic programming method with better features and boundary constraints. On the five-language ZeroSpeech benchmarks, our simple approach gives similar state-of-the-art results compared to the new ES-KMeans+ method, while being almost five times faster.
Abstract:Given an image query, visually prompted keyword localisation (VPKL) aims to find occurrences of the depicted word in a speech collection. This can be useful when transcriptions are not available for a low-resource language (e.g. if it is unwritten). Previous work showed that VPKL can be performed with a visually grounded speech model trained on paired images and unlabelled speech. But all experiments were done on English. Moreover, transcriptions were used to get positive and negative pairs for the contrastive loss. This paper introduces a few-shot learning scheme to mine pairs automatically without transcriptions. On English, this results in only a small drop in performance. We also - for the first time - consider VPKL on a real low-resource language, Yoruba. While scores are reasonable, here we see a bigger drop in performance compared to using ground truth pairs because the mining is less accurate in Yoruba.
Abstract:Discovering a lexicon from unlabeled audio is a longstanding challenge for zero-resource speech processing. One approach is to search for frequently occurring patterns in speech. We revisit this idea with DUSTED: Discrete Unit Spoken-TErm Discovery. Leveraging self-supervised models, we encode input audio into sequences of discrete units. Next, we find repeated patterns by searching for similar unit sub-sequences, inspired by alignment algorithms from bioinformatics. Since discretization discards speaker information, DUSTED finds better matches across speakers, improving the coverage and consistency of the discovered patterns. We demonstrate these improvements on the ZeroSpeech Challenge, achieving state-of-the-art results on the spoken-term discovery track. Finally, we analyze the duration distribution of the patterns, showing that our method finds longer word- or phrase-like terms.
Abstract:Visually grounded speech models link speech to images. We extend this connection by linking images to text via an existing image captioning system, and as a result gain the ability to map speech audio directly to text. This approach can be used for speech translation with just images by having the audio in a different language from the generated captions. We investigate such a system on a real low-resource language, Yor\`ub\'a, and propose a Yor\`ub\'a-to-English speech translation model that leverages pretrained components in order to be able to learn in the low-resource regime. To limit overfitting, we find that it is essential to use a decoding scheme that produces diverse image captions for training. Results show that the predicted translations capture the main semantics of the spoken audio, albeit in a simpler and shorter form.
Abstract:When children learn new words, they employ constraints such as the mutual exclusivity (ME) bias: a novel word is mapped to a novel object rather than a familiar one. This bias has been studied computationally, but only in models that use discrete word representations as input, ignoring the high variability of spoken words. We investigate the ME bias in the context of visually grounded speech models that learn from natural images and continuous speech audio. Concretely, we train a model on familiar words and test its ME bias by asking it to select between a novel and a familiar object when queried with a novel word. To simulate prior acoustic and visual knowledge, we experiment with several initialisation strategies using pretrained speech and vision networks. Our findings reveal the ME bias across the different initialisation approaches, with a stronger bias in models with more prior (in particular, visual) knowledge. Additional tests confirm the robustness of our results, even when different loss functions are considered.
Abstract:We revisit a self-supervised method that segments unlabelled speech into word-like segments. We start from the two-stage duration-penalised dynamic programming method that performs zero-resource segmentation without learning an explicit lexicon. In the first acoustic unit discovery stage, we replace contrastive predictive coding features with HuBERT. After word segmentation in the second stage, we get an acoustic word embedding for each segment by averaging HuBERT features. These embeddings are clustered using K-means to get a lexicon. The result is good full-coverage segmentation with a lexicon that achieves state-of-the-art performance on the ZeroSpeech benchmarks.
Abstract:Voice conversion aims to convert source speech into a target voice using recordings of the target speaker as a reference. Newer models are producing increasingly realistic output. But what happens when models are fed with non-standard data, such as speech from a user with a speech impairment? We investigate how a recent voice conversion model performs on non-standard downstream voice conversion tasks. We use a simple but robust approach called k-nearest neighbors voice conversion (kNN-VC). We look at four non-standard applications: stuttered voice conversion, cross-lingual voice conversion, musical instrument conversion, and text-to-voice conversion. The latter involves converting to a target voice specified through a text description, e.g. "a young man with a high-pitched voice". Compared to an established baseline, we find that kNN-VC retains high performance in stuttered and cross-lingual voice conversion. Results are more mixed for the musical instrument and text-to-voice conversion tasks. E.g., kNN-VC works well on some instruments like drums but not on others. Nevertheless, this shows that voice conversion models - and kNN-VC in particular - are increasingly applicable in a range of non-standard downstream tasks. But there are still limitations when samples are very far from the training distribution. Code, samples, trained models: https://rf5.github.io/sacair2023-knnvc-demo/.
Abstract:Voice conversion aims to transform source speech into a different target voice. However, typical voice conversion systems do not account for rhythm, which is an important factor in the perception of speaker identity. To bridge this gap, we introduce Urhythmic-an unsupervised method for rhythm conversion that does not require parallel data or text transcriptions. Using self-supervised representations, we first divide source audio into segments approximating sonorants, obstruents, and silences. Then we model rhythm by estimating speaking rate or the duration distribution of each segment type. Finally, we match the target speaking rate or rhythm by time-stretching the speech segments. Experiments show that Urhythmic outperforms existing unsupervised methods in terms of quality and prosody. Code and checkpoints: https://github.com/bshall/urhythmic. Audio demo page: https://ubisoft-laforge.github.io/speech/urhythmic.