Abstract:Generative models can create entirely new images, but they can also partially modify real images in ways that are undetectable to the human eye. In this paper, we address the challenge of automatically detecting such local manipulations. One of the most pressing problems in deepfake detection remains the ability of models to generalize to different classes of generators. In the case of fully manipulated images, representations extracted from large self-supervised models (such as CLIP) provide a promising direction towards more robust detectors. Here, we introduce DeCLIP, a first attempt to leverage such large pretrained features for detecting local manipulations. We show that, when combined with a reasonably large convolutional decoder, pretrained self-supervised representations are able to perform localization and improve generalization capabilities over existing methods. Unlike previous work, our approach is able to perform localization on the challenging case of latent diffusion models, where the entire image is affected by the fingerprint of the generator. Moreover, we observe that this type of data, which combines local semantic information with a global fingerprint, provides more stable generalization than other categories of generative methods.
Abstract:Given an image query, visually prompted keyword localisation (VPKL) aims to find occurrences of the depicted word in a speech collection. This can be useful when transcriptions are not available for a low-resource language (e.g. if it is unwritten). Previous work showed that VPKL can be performed with a visually grounded speech model trained on paired images and unlabelled speech. But all experiments were done on English. Moreover, transcriptions were used to get positive and negative pairs for the contrastive loss. This paper introduces a few-shot learning scheme to mine pairs automatically without transcriptions. On English, this results in only a small drop in performance. We also - for the first time - consider VPKL on a real low-resource language, Yoruba. While scores are reasonable, here we see a bigger drop in performance compared to using ground truth pairs because the mining is less accurate in Yoruba.
Abstract:In this paper, we demonstrate that attacks in the latest ASVspoof5 dataset -- a de facto standard in the field of voice authenticity and deepfake detection -- can be identified with surprising accuracy using a small subset of very simplistic features. These are derived from the openSMILE library, and are scalar-valued, easy to compute, and human interpretable. For example, attack A10`s unvoiced segments have a mean length of 0.09 +- 0.02, while bona fide instances have a mean length of 0.18 +- 0.07. Using this feature alone, a threshold classifier achieves an Equal Error Rate (EER) of 10.3% for attack A10. Similarly, across all attacks, we achieve up to 0.8% EER, with an overall EER of 15.7 +- 6.0%. We explore the generalization capabilities of these features and find that some of them transfer effectively between attacks, primarily when the attacks originate from similar Text-to-Speech (TTS) architectures. This finding may indicate that voice anti-spoofing is, in part, a problem of identifying and remembering signatures or fingerprints of individual TTS systems. This allows to better understand anti-spoofing models and their challenges in real-world application.
Abstract:Audio deepfake detection has become a pivotal task over the last couple of years, as many recent speech synthesis and voice cloning systems generate highly realistic speech samples, thus enabling their use in malicious activities. In this paper we address the issue of audio deepfake detection as it was set in the ASVspoof5 challenge. First, we benchmark ten types of pretrained representations and show that the self-supervised representations stemming from the wav2vec2 and wavLM families perform best. Of the two, wavLM is better when restricting the pretraining data to LibriSpeech, as required by the challenge rules. To further improve performance, we finetune the wavLM model for the deepfake detection task. We extend the ASVspoof5 dataset with samples from other deepfake detection datasets and apply data augmentation. Our final challenge submission consists of a late fusion combination of four models and achieves an equal error rate of 6.56% and 17.08% on the two evaluation sets.
Abstract:Visually grounded speech models link speech to images. We extend this connection by linking images to text via an existing image captioning system, and as a result gain the ability to map speech audio directly to text. This approach can be used for speech translation with just images by having the audio in a different language from the generated captions. We investigate such a system on a real low-resource language, Yor\`ub\'a, and propose a Yor\`ub\'a-to-English speech translation model that leverages pretrained components in order to be able to learn in the low-resource regime. To limit overfitting, we find that it is essential to use a decoding scheme that produces diverse image captions for training. Results show that the predicted translations capture the main semantics of the spoken audio, albeit in a simpler and shorter form.
Abstract:The remarkable generative capabilities of denoising diffusion models have raised new concerns regarding the authenticity of the images we see every day on the Internet. However, the vast majority of existing deepfake detection models are tested against previous generative approaches (e.g. GAN) and usually provide only a "fake" or "real" label per image. We believe a more informative output would be to augment the per-image label with a localization map indicating which regions of the input have been manipulated. To this end, we frame this task as a weakly-supervised localization problem and identify three main categories of methods (based on either explanations, local scores or attention), which we compare on an equal footing by using the Xception network as the common backbone architecture. We provide a careful analysis of all the main factors that parameterize the design space: choice of method, type of supervision, dataset and generator used in the creation of manipulated images; our study is enabled by constructing datasets in which only one of the components is varied. Our results show that weakly-supervised localization is attainable, with the best performing detection method (based on local scores) being less sensitive to the looser supervision than to the mismatch in terms of dataset or generator.
Abstract:Generalisation -- the ability of a model to perform well on unseen data -- is crucial for building reliable deep fake detectors. However, recent studies have shown that the current audio deep fake models fall short of this desideratum. In this paper we show that pretrained self-supervised representations followed by a simple logistic regression classifier achieve strong generalisation capabilities, reducing the equal error rate from 30% to 8% on the newly introduced In-the-Wild dataset. Importantly, this approach also produces considerably better calibrated models when compared to previous approaches. This means that we can trust our model's predictions more and use these for downstream tasks, such as uncertainty estimation. In particular, we show that the entropy of the estimated probabilities provides a reliable way of rejecting uncertain samples and further improving the accuracy.
Abstract:We propose a visually grounded speech model that learns new words and their visual depictions from just a few word-image example pairs. Given a set of test images and a spoken query, we ask the model which image depicts the query word. Previous work has simplified this few-shot learning problem by either using an artificial setting with digit word-image pairs or by using a large number of examples per class. Moreover, all previous studies were performed using English speech-image data. We propose an approach that can work on natural word-image pairs but with less examples, i.e. fewer shots, and then illustrate how this approach can be applied for multimodal few-shot learning in a real low-resource language, Yoruba. Our approach involves using the given word-image example pairs to mine new unsupervised word-image training pairs from large collections of unlabelledspeech and images. Additionally, we use a word-to-image attention mechanism to determine word-image similarity. With this new model, we achieve better performance with fewer shots than previous approaches on an existing English benchmark. Many of the model's mistakes are due to confusion between visual concepts co-occurring in similar contexts. The experiments on Yoruba show the benefit of transferring knowledge from a multimodal model trained on a larger set of English speech-image data.
Abstract:Most vision-and-language pretraining research focuses on English tasks. However, the creation of multilingual multimodal evaluation datasets (e.g. Multi30K, xGQA, XVNLI, and MaRVL) poses a new challenge in finding high-quality training data that is both multilingual and multimodal. In this paper, we investigate whether machine translating English multimodal data can be an effective proxy for the lack of readily available multilingual data. We call this framework TD-MML: Translated Data for Multilingual Multimodal Learning, and it can be applied to any multimodal dataset and model. We apply it to both pretraining and fine-tuning data with a state-of-the-art model. In order to prevent models from learning from low-quality translated text, we propose two metrics for automatically removing such translations from the resulting datasets. In experiments on five tasks across 20 languages in the IGLUE benchmark, we show that translated data can provide a useful signal for multilingual multimodal learning, both at pretraining and fine-tuning.
Abstract:Visually grounded speech (VGS) models are trained on images paired with unlabelled spoken captions. Such models could be used to build speech systems in settings where it is impossible to get labelled data, e.g. for documenting unwritten languages. However, most VGS studies are in English or other high-resource languages. This paper attempts to address this shortcoming. We collect and release a new single-speaker dataset of audio captions for 6k Flickr images in Yor\`ub\'a -- a real low-resource language spoken in Nigeria. We train an attention-based VGS model where images are automatically tagged with English visual labels and paired with Yor\`ub\'a utterances. This enables cross-lingual keyword localisation: a written English query is detected and located in Yor\`ub\'a speech. To quantify the effect of the smaller dataset, we compare to English systems trained on similar and more data. We hope that this new dataset will stimulate research in the use of VGS models for real low-resource languages.