Abstract:In this paper, we introduce Hunyuan-Large, which is currently the largest open-source Transformer-based mixture of experts model, with a total of 389 billion parameters and 52 billion activation parameters, capable of handling up to 256K tokens. We conduct a thorough evaluation of Hunyuan-Large's superior performance across various benchmarks including language understanding and generation, logical reasoning, mathematical problem-solving, coding, long-context, and aggregated tasks, where it outperforms LLama3.1-70B and exhibits comparable performance when compared to the significantly larger LLama3.1-405B model. Key practice of Hunyuan-Large include large-scale synthetic data that is orders larger than in previous literature, a mixed expert routing strategy, a key-value cache compression technique, and an expert-specific learning rate strategy. Additionally, we also investigate the scaling laws and learning rate schedule of mixture of experts models, providing valuable insights and guidances for future model development and optimization. The code and checkpoints of Hunyuan-Large are released to facilitate future innovations and applications. Codes: https://github.com/Tencent/Hunyuan-Large Models: https://huggingface.co/tencent/Tencent-Hunyuan-Large
Abstract:Motivated by the theoretical interest in reconstructing long 3D trajectories of individual birds in large flocks, we developed CoMo, a co-moving camera system of two synchronized high speed cameras coupled with rotational stages, which allow us to dynamically follow the motion of a target flock. With the rotation of the cameras we overcome the limitations of standard static systems that restrict the duration of the collected data to the short interval of time in which targets are in the cameras common field of view, but at the same time we change in time the external parameters of the system, which have then to be calibrated frame-by-frame. We address the calibration of the external parameters measuring the position of the cameras and their three angles of yaw, pitch and roll in the system "home" configuration (rotational stage at an angle equal to 0deg and combining this static information with the time dependent rotation due to the stages. We evaluate the robustness and accuracy of the system by comparing reconstructed and measured 3D distances in what we call 3D tests, which show a relative error of the order of 1%. The novelty of the work presented in this paper is not only on the system itself, but also on the approach we use in the tests, which we show to be a very powerful tool in detecting and fixing calibration inaccuracies and that, for this reason, may be relevant for a broad audience.
Abstract:The reconstruction of a scene via a stereo-camera system is a two-steps process, where at first images from different cameras are matched to identify the set of point-to-point correspondences that then will actually be reconstructed in the three dimensional real world. The performance of the system strongly relies of the calibration procedure, which has to be carefully designed to guarantee optimal results. We implemented three different calibration methods and we compared their performance over 19 datasets. We present the experimental evidence that, due to the image noise, a single set of parameters is not sufficient to achieve high accuracy in the identification of the correspondences and in the 3D reconstruction at the same time. We propose to calibrate the system twice to estimate two different sets of parameters: the one obtained by minimizing the reprojection error that will be used when dealing with quantities defined in the 2D space of the cameras, and the one obtained by minimizing the reconstruction error that will be used when dealing with quantities defined in the real 3D world.
Abstract:This technique report introduces TexSmart, a text understanding system that supports fine-grained named entity recognition (NER) and enhanced semantic analysis functionalities. Compared to most previous publicly available text understanding systems and tools, TexSmart holds some unique features. First, the NER function of TexSmart supports over 1,000 entity types, while most other public tools typically support several to (at most) dozens of entity types. Second, TexSmart introduces new semantic analysis functions like semantic expansion and deep semantic representation, that are absent in most previous systems. Third, a spectrum of algorithms (from very fast algorithms to those that are relatively slow but more accurate) are implemented for one function in TexSmart, to fulfill the requirements of different academic and industrial applications. The adoption of unsupervised or weakly-supervised algorithms is especially emphasized, with the goal of easily updating our models to include fresh data with less human annotation efforts. The main contents of this report include major functions of TexSmart, algorithms for achieving these functions, how to use the TexSmart toolkit and Web APIs, and evaluation results of some key algorithms.
Abstract:The study of question answering has received increasing attention in recent years. This work focuses on providing an answer that compatible with both user intent and conditioning information corresponding to the question, such as delivery status and stock information in e-commerce. However, these conditions may be wrong or incomplete in real-world applications. Although existing question answering systems have considered the external information, such as categorical attributes and triples in knowledge base, they all assume that the external information is correct and complete. To alleviate the effect of defective condition values, this paper proposes condition aware and revise Transformer (CAR-Transformer). CAR-Transformer (1) revises each condition value based on the whole conversation and original conditions values, and (2) it encodes the revised conditions and utilizes the conditions embedding to select an answer. Experimental results on a real-world customer service dataset demonstrate that the CAR-Transformer can still select an appropriate reply when conditions corresponding to the question exist wrong or missing values, and substantially outperforms baseline models on automatic and human evaluations. The proposed CAR-Transformer can be extended to other NLP tasks which need to consider conditioning information.