Abstract:Large language models (LLMs) demonstrate strong potential as agents for tool invocation due to their advanced comprehension and planning capabilities. Users increasingly rely on LLM-based agents to solve complex missions through iterative interactions. However, existing benchmarks predominantly access agents in single-mission scenarios, failing to capture real-world complexity. To bridge this gap, we propose the Multi-Mission Tool Bench. In the benchmark, each test case comprises multiple interrelated missions. This design requires agents to dynamically adapt to evolving demands. Moreover, the proposed benchmark explores all possible mission-switching patterns within a fixed mission number. Specifically, we propose a multi-agent data generation framework to construct the benchmark. We also propose a novel method to evaluate the accuracy and efficiency of agent decisions with dynamic decision trees. Experiments on diverse open-source and closed-source LLMs reveal critical factors influencing agent robustness and provide actionable insights to the tool invocation society.
Abstract:Event cameras are novel neuromorphic vision sensors with ultrahigh temporal resolution and low latency, both in the order of microseconds. Instead of image frames, event cameras generate an asynchronous event stream of per-pixel intensity changes with precise timestamps. The resulting sparse data structure impedes applying many conventional computer vision techniques to event streams, and specific algorithms should be designed to leverage the information provided by event cameras. We propose a corner detection algorithm, eSUSAN, inspired by the conventional SUSAN (smallest univalue segment assimilating nucleus) algorithm for corner detection. The proposed eSUSAN extracts the univalue segment assimilating nucleus from the circle kernel based on the similarity across timestamps and distinguishes corner events by the number of pixels in the nucleus area. Moreover, eSUSAN is fast enough to be applied to CeleX-V, the event camera with the highest resolution available. Based on eSUSAN, we also propose the SE-Harris corner detector, which uses adaptive normalization based on exponential decay to quickly construct a local surface of active events and the event-based Harris detector to refine the corners identified by eSUSAN. We evaluated the proposed algorithms on a public dataset and CeleX-V data. Both eSUSAN and SE-Harris exhibit higher real-time performance than existing algorithms while maintaining high accuracy and tracking performance.