Abstract:Humans solving algorithmic (or) reasoning problems typically exhibit solution times that grow as a function of problem difficulty. Adaptive recurrent neural networks have been shown to exhibit this property for various language-processing tasks. However, little work has been performed to assess whether such adaptive computation can also enable vision models to extrapolate solutions beyond their training distribution's difficulty level, with prior work focusing on very simple tasks. In this study, we investigate a critical functional role of such adaptive processing using recurrent neural networks: to dynamically scale computational resources conditional on input requirements that allow for zero-shot generalization to novel difficulty levels not seen during training using two challenging visual reasoning tasks: PathFinder and Mazes. We combine convolutional recurrent neural networks (ConvRNNs) with a learnable halting mechanism based on Graves (2016). We explore various implementations of such adaptive ConvRNNs (AdRNNs) ranging from tying weights across layers to more sophisticated biologically inspired recurrent networks that possess lateral connections and gating. We show that 1) AdRNNs learn to dynamically halt processing early (or late) to solve easier (or harder) problems, 2) these RNNs zero-shot generalize to more difficult problem settings not shown during training by dynamically increasing the number of recurrent iterations at test time. Our study provides modeling evidence supporting the hypothesis that recurrent processing enables the functional advantage of adaptively allocating compute resources conditional on input requirements and hence allowing generalization to harder difficulty levels of a visual reasoning problem without training.
Abstract:Work at the intersection of vision science and deep learning is starting to explore the efficacy of deep convolutional networks (DCNs) and recurrent networks in solving perceptual grouping problems that underlie primate visual recognition and segmentation. Here, we extend this line of work to investigate the compactness and generalizability of DCN solutions to learning low-level perceptual grouping routines involving contour integration. We introduce V1Net, a bio-inspired recurrent unit that incorporates lateral connections ubiquitous in cortical circuitry. Feedforward convolutional layers in DCNs can be substituted with V1Net modules to enhance their contextual visual processing support for perceptual grouping. We compare the learning efficiency and accuracy of V1Net-DCNs to that of 14 carefully selected feedforward and recurrent neural architectures (including state-of-the-art DCNs) on MarkedLong -- a synthetic forced-choice contour integration dataset of 800,000 images we introduce here -- and the previously published Pathfinder contour integration benchmarks. We gauged solution generalizability by measuring the transfer learning performance of our candidate models trained on MarkedLong that were fine-tuned to learn PathFinder. Our results demonstrate that a compact 3-layer V1Net-DCN matches or outperforms the test accuracy and sample efficiency of all tested comparison models which contain between 5x and 1000x more trainable parameters; we also note that V1Net-DCN learns the most compact generalizable solution to MarkedLong. A visualization of the temporal dynamics of a V1Net-DCN elucidates its usage of interpretable grouping computations to solve MarkedLong. The compact and rich representations of V1Net-DCN also make it a promising candidate to build on-device machine vision algorithms as well as help better understand biological cortical circuitry.
Abstract:In this paper, we present a novel adversarial lossy video compression model. At extremely low bit-rates, standard video coding schemes suffer from unpleasant reconstruction artifacts such as blocking, ringing etc. Existing learned neural approaches to video compression have achieved reasonable success on reducing the bit-rate for efficient transmission and reduce the impact of artifacts to an extent. However, they still tend to produce blurred results under extreme compression. In this paper, we present a deep adversarial learned video compression model that minimizes an auxiliary adversarial distortion objective. We find this adversarial objective to correlate better with human perceptual quality judgement relative to traditional quality metrics such as MS-SSIM and PSNR. Our experiments using a state-of-the-art learned video compression system demonstrate a reduction of perceptual artifacts and reconstruction of detail lost especially under extremely high compression.
Abstract:Progress in deep learning has spawned great successes in many engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural networks, are now approaching -- and sometimes even surpassing -- human accuracy on a variety of visual recognition tasks. Here, however, we show that these neural networks and their recent extensions struggle in recognition tasks where co-dependent visual features must be detected over long spatial ranges. We introduce the horizontal gated-recurrent unit (hGRU) to learn intrinsic horizontal connections -- both within and across feature columns. We demonstrate that a single hGRU layer matches or outperforms all tested feedforward hierarchical baselines including state-of-the-art architectures which have orders of magnitude more free parameters. We further discuss the biological plausibility of the hGRU in comparison to anatomical data from the visual cortex as well as human behavioral data on a classic contour detection task.