Abstract:Cyber-physical systems have become an essential part of the modern healthcare industry. The healthcare cyber-physical systems (HCPS) combine physical and cyber components to improve the healthcare industry. While HCPS has many advantages, it also has some drawbacks, such as a lengthy data entry process, a lack of real-time processing, and limited real-time patient visualization. To overcome these issues, this paper represents an innovative approach to integrating large language model (LLM) to enhance the efficiency of the healthcare system. By incorporating LLM at various layers, HCPS can leverage advanced AI capabilities to improve patient outcomes, advance data processing, and enhance decision-making.
Abstract:Recommender systems use users' historical interactions to learn their preferences and deliver personalized recommendations from a vast array of candidate items. Current recommender systems primarily rely on the assumption that the training and testing datasets have identical distributions, which may not hold true in reality. In fact, the distribution shift between training and testing datasets often occurs as a result of the evolution of user attributes, which degrades the performance of the conventional recommender systems because they fail in Out-of-Distribution (OOD) generalization, particularly in situations of data sparsity. This study delves deeply into the challenge of OOD generalization and proposes a novel model called Cross-Domain Causal Preference Learning for Out-of-Distribution Recommendation (CDCOR), which involves employing a domain adversarial network to uncover users' domain-shared preferences and utilizing a causal structure learner to capture causal invariance to deal with the OOD problem. Through extensive experiments on two real-world datasets, we validate the remarkable performance of our model in handling diverse scenarios of data sparsity and out-of-distribution environments. Furthermore, our approach surpasses the benchmark models, showcasing outstanding capabilities in out-of-distribution generalization.
Abstract:Mobile Edge Computing (MEC) broadens the scope of computation and storage beyond the central network, incorporating edge nodes close to end devices. This expansion facilitates the implementation of large-scale "connected things" within edge networks. The advent of applications necessitating real-time, high-quality service presents several challenges, such as low latency, high data rate, reliability, efficiency, and security, all of which demand resolution. The incorporation of reinforcement learning (RL) methodologies within MEC networks promotes a deeper understanding of mobile user behaviors and network dynamics, thereby optimizing resource use in computing and communication processes. This paper offers an exhaustive survey of RL applications in MEC networks, initially presenting an overview of RL from its fundamental principles to the latest advanced frameworks. Furthermore, it outlines various RL strategies employed in offloading, caching, and communication within MEC networks. Finally, it explores open issues linked with software and hardware platforms, representation, RL robustness, safe RL, large-scale scheduling, generalization, security, and privacy. The paper proposes specific RL techniques to mitigate these issues and provides insights into their practical applications.
Abstract:Fine-tuning pre-trained Large Language Models (LLMs) is essential to align them with human values and intentions. This process often utilizes methods like pairwise comparisons and KL divergence against a reference LLM, focusing on the evaluation of full answers generated by the models. However, the generation of these responses occurs in a token level, following a sequential, auto-regressive fashion. In this paper, we introduce Token-level Direct Preference Optimization (TDPO), a novel approach to align LLMs with human preferences by optimizing policy at the token level. Unlike previous methods, which face challenges in divergence efficiency, TDPO incorporates forward KL divergence constraints for each token, improving alignment and diversity. Utilizing the Bradley-Terry model for a token-based reward system, TDPO enhances the regulation of KL divergence, while preserving simplicity without the need for explicit reward modeling. Experimental results across various text tasks demonstrate TDPO's superior performance in balancing alignment with generation diversity. Notably, fine-tuning with TDPO strikes a better balance than DPO in the controlled sentiment generation and single-turn dialogue datasets, and significantly improves the quality of generated responses compared to both DPO and PPO-based RLHF methods. Our code is open-sourced at https://github.com/Vance0124/Token-level-Direct-Preference-Optimization.
Abstract:Personalized fairness in recommendations has been attracting increasing attention from researchers. The existing works often treat a fairness requirement, represented as a collection of sensitive attributes, as a hyper-parameter, and pursue extreme fairness by completely removing information of sensitive attributes from the learned fair embedding, which suffer from two challenges: huge training cost incurred by the explosion of attribute combinations, and the suboptimal trade-off between fairness and accuracy. In this paper, we propose a novel Adaptive Fair Representation Learning (AFRL) model, which achieves a real personalized fairness due to its advantage of training only one model to adaptively serve different fairness requirements during inference phase. Particularly, AFRL treats fairness requirements as inputs and can learn an attribute-specific embedding for each attribute from the unfair user embedding, which endows AFRL with the adaptability during inference phase to determine the non-sensitive attributes under the guidance of the user's unique fairness requirement. To achieve a better trade-off between fairness and accuracy in recommendations, AFRL conducts a novel Information Alignment to exactly preserve discriminative information of non-sensitive attributes and incorporate a debiased collaborative embedding into the fair embedding to capture attribute-independent collaborative signals, without loss of fairness. Finally, the extensive experiments conducted on real datasets together with the sound theoretical analysis demonstrate the superiority of AFRL.
Abstract:Mobile edge computing (MEC) is essential for next-generation mobile network applications that prioritize various performance metrics, including delays and energy consumption. However, conventional single-objective scheduling solutions cannot be directly applied to practical systems in which the preferences of these applications (i.e., the weights of different objectives) are often unknown or challenging to specify in advance. In this study, we address this issue by formulating a multi-objective offloading problem for MEC with multiple edges to minimize expected long-term energy consumption and transmission delay while considering unknown preferences as parameters. To address the challenge of unknown preferences, we design a multi-objective (deep) reinforcement learning (MORL)-based resource scheduling scheme with proximal policy optimization (PPO). In addition, we introduce a well-designed state encoding method for constructing features for multiple edges in MEC systems, a sophisticated reward function for accurately computing the utilities of delay and energy consumption. Simulation results demonstrate that our proposed MORL scheme enhances the hypervolume of the Pareto front by up to 233.1% compared to benchmarks. Our full framework is available at https://github.com/gracefulning/mec_morl_multipolicy.
Abstract:Exploiting the computational heterogeneity of mobile devices and edge nodes, mobile edge computation (MEC) provides an efficient approach to achieving real-time applications that are sensitive to information freshness, by offloading tasks from mobile devices to edge nodes. We use the metric Age-of-Information (AoI) to evaluate information freshness. An efficient solution to minimize the AoI for the MEC system with multiple users is non-trivial to obtain due to the random computing time. In this paper, we consider multiple users offloading tasks to heterogeneous edge servers in a MEC system. We first reformulate the problem as a Restless Multi-Arm-Bandit (RMAB) problem and establish a hierarchical Markov Decision Process (MDP) to characterize the updating of AoI for the MEC system. Based on the hierarchical MDP, we propose a nested index framework and design a nested index policy with provably asymptotic optimality. Finally, the closed form of the nested index is obtained, which enables the performance tradeoffs between computation complexity and accuracy. Our algorithm leads to an optimality gap reduction of up to 40%, compared to benchmarks. Our algorithm asymptotically approximates the lower bound as the system scalar gets large enough.
Abstract:The cold-start problem is a long-standing challenge in recommender systems. As a promising solution, content-based generative models usually project a cold-start item's content onto a warm-start item embedding to capture collaborative signals from item content so that collaborative filtering can be applied. However, since the training of the cold-start recommendation models is conducted on warm datasets, the existent methods face the issue that the collaborative embeddings of items will be blurred, which significantly degenerates the performance of cold-start item recommendation. To address this issue, we propose a novel model called Contrastive Collaborative Filtering for Cold-start item Recommendation (CCFCRec), which capitalizes on the co-occurrence collaborative signals in warm training data to alleviate the issue of blurry collaborative embeddings for cold-start item recommendation. In particular, we devise a contrastive collaborative filtering (CF) framework, consisting of a content CF module and a co-occurrence CF module to generate the content-based collaborative embedding and the co-occurrence collaborative embedding for a training item, respectively. During the joint training of the two CF modules, we apply a contrastive learning between the two collaborative embeddings, by which the knowledge about the co-occurrence signals can be indirectly transferred to the content CF module, so that the blurry collaborative embeddings can be rectified implicitly by the memorized co-occurrence collaborative signals during the applying phase. Together with the sound theoretical analysis, the extensive experiments conducted on real datasets demonstrate the superiority of the proposed model. The codes and datasets are available on https://github.com/zzhin/CCFCRec.
Abstract:Adversarial training (AT) is widely considered as the most promising strategy to defend against adversarial attacks and has drawn increasing interest from researchers. However, the existing AT methods still suffer from two challenges. First, they are unable to handle unrestricted adversarial examples (UAEs), which are built from scratch, as opposed to restricted adversarial examples (RAEs), which are created by adding perturbations bound by an $l_p$ norm to observed examples. Second, the existing AT methods often achieve adversarial robustness at the expense of standard generalizability (i.e., the accuracy on natural examples) because they make a tradeoff between them. To overcome these challenges, we propose a unique viewpoint that understands UAEs as imperceptibly perturbed unobserved examples. Also, we find that the tradeoff results from the separation of the distributions of adversarial examples and natural examples. Based on these ideas, we propose a novel AT approach called Provable Unrestricted Adversarial Training (PUAT), which can provide a target classifier with comprehensive adversarial robustness against both UAE and RAE, and simultaneously improve its standard generalizability. Particularly, PUAT utilizes partially labeled data to achieve effective UAE generation by accurately capturing the natural data distribution through a novel augmented triple-GAN. At the same time, PUAT extends the traditional AT by introducing the supervised loss of the target classifier into the adversarial loss and achieves the alignment between the UAE distribution, the natural data distribution, and the distribution learned by the classifier, with the collaboration of the augmented triple-GAN. Finally, the solid theoretical analysis and extensive experiments conducted on widely-used benchmarks demonstrate the superiority of PUAT.
Abstract:The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world, though the vaccines have been developed and national vaccination coverage rate is steadily increasing. At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19. Thanks to the development of deep learning technology, some deep learning solutions for lung infection segmentation have been proposed. However, due to the scattered distribution, complex background interference and blurred boundaries, the accuracy and completeness of the existing models are still unsatisfactory. To this end, we propose a boundary guided semantic learning network (BSNet) in this paper. On the one hand, the dual-branch semantic enhancement module that combines the top-level semantic preservation and progressive semantic integration is designed to model the complementary relationship between different high-level features, thereby promoting the generation of more complete segmentation results. On the other hand, the mirror-symmetric boundary guidance module is proposed to accurately detect the boundaries of the lesion regions in a mirror-symmetric way. Experiments on the publicly available dataset demonstrate that our BSNet outperforms the existing state-of-the-art competitors and achieves a real-time inference speed of 44 FPS.