Abstract:A truly intelligent Large Language Model (LLM) should be capable of correcting errors in its responses through external interactions. However, even the most advanced models often face challenges in improving their outputs. In this paper, we explore how to cultivate LLMs with the self-refinement capability through iterative preference training, and how this ability can be leveraged to improve model performance during inference. To this end, we introduce a novel post-training and inference framework, called ARIES: Adaptive Refinement and Iterative Enhancement Structure. This method iteratively performs preference training and self-refinement-based data collection. During training, ARIES strengthen the model's direct question-answering capability while simultaneously unlocking its self-refinement potential. During inference, ARIES harnesses this self-refinement capability to generate a series of progressively refined responses, which are then filtered using either the Reward Model Scoring or a simple yet effective Rule-Based Selection mechanism, specifically tailored to our approach, to construct a dataset for the next round of preference training. Experimental results demonstrate the remarkable performance of ARIES. When applied to the Llama-3.1-8B model and under the self-refinement setting, ARIES surpasses powerful models such as GPT-4o, achieving 62.3% length-controlled (LC) and a 63.3% raw win rates on AlpacaEval 2, outperforming Iterative DPO by 27.8% and 35.5% respectively, as well as a 50.3% win rate on Arena-Hard, surpassing Iterative DPO by 26.6%. Furthermore, ARIES consistently enhances performance on mathematical reasoning tasks like GSM8K and MATH.
Abstract:Communication is a fundamental aspect of human society, facilitating the exchange of information and beliefs among people. Despite the advancements in large language models (LLMs), recent agents built with these often neglect the control over discussion tactics, which are essential in communication scenarios and games. As a variant of the famous communication game Werewolf, One Night Ultimate Werewolf (ONUW) requires players to develop strategic discussion policies due to the potential role changes that increase the uncertainty and complexity of the game. In this work, we first present the existence of the Perfect Bayesian Equilibria (PBEs) in two scenarios of the ONUW game: one with discussion and one without. The results showcase that the discussion greatly changes players' utilities by affecting their beliefs, emphasizing the significance of discussion tactics. Based on the insights obtained from the analyses, we propose an RL-instructed language agent framework, where a discussion policy trained by reinforcement learning (RL) is employed to determine appropriate discussion tactics to adopt. Our experimental results on several ONUW game settings demonstrate the effectiveness and generalizability of our proposed framework.