Abstract:Cooperative multi-agent reinforcement learning (MARL) aims to develop agents that can collaborate effectively. However, most cooperative MARL methods overfit training agents, making learned policies not generalize well to unseen collaborators, which is a critical issue for real-world deployment. Some methods attempt to address the generalization problem but require prior knowledge or predefined policies of new teammates, limiting real-world applications. To this end, we propose a hierarchical MARL approach to enable generalizable cooperation via role diversity, namely CORD. CORD's high-level controller assigns roles to low-level agents by maximizing the role entropy with constraints. We show this constrained objective can be decomposed into causal influence in role that enables reasonable role assignment, and role heterogeneity that yields coherent, non-redundant role clusters. Evaluated on a variety of cooperative multi-agent tasks, CORD achieves better performance than baselines, especially in generalization tests. Ablation studies further demonstrate the efficacy of the constrained objective in generalizable cooperation.
Abstract:The in-context learning ability of Transformer models has brought new possibilities to visual navigation. In this paper, we focus on the video navigation setting, where an in-context navigation policy needs to be learned purely from videos in an offline manner, without access to the actual environment. For this setting, we propose Navigate Only Look Once (NOLO), a method for learning a navigation policy that possesses the in-context ability and adapts to new scenes by taking corresponding context videos as input without finetuning or re-training. To enable learning from videos, we first propose a pseudo action labeling procedure using optical flow to recover the action label from egocentric videos. Then, offline reinforcement learning is applied to learn the navigation policy. Through extensive experiments on different scenes, we show that our algorithm outperforms baselines by a large margin, which demonstrates the in-context learning ability of the learned policy.
Abstract:In cooperative multi-agent reinforcement learning (MARL), combining value decomposition with actor-critic enables agents to learn stochastic policies, which are more suitable for the partially observable environment. Given the goal of learning local policies that enable decentralized execution, agents are commonly assumed to be independent of each other, even in centralized training. However, such an assumption may prohibit agents from learning the optimal joint policy. To address this problem, we explicitly take the dependency among agents into centralized training. Although this leads to the optimal joint policy, it may not be factorized for decentralized execution. Nevertheless, we theoretically show that from such a joint policy, we can always derive another joint policy that achieves the same optimality but can be factorized for decentralized execution. To this end, we propose multi-agent conditional policy factorization (MACPF), which takes more centralized training but still enables decentralized execution. We empirically verify MACPF in various cooperative MARL tasks and demonstrate that MACPF achieves better performance or faster convergence than baselines.