Abstract:This paper proposes a knowledge-enhanced disease diagnosis method based on a prompt learning framework. The method retrieves structured knowledge from external knowledge graphs related to clinical cases, encodes it, and injects it into the prompt templates to enhance the language model's understanding and reasoning capabilities for the task.We conducted experiments on three public datasets: CHIP-CTC, IMCS-V2-NER, and KUAKE-QTR. The results show that the proposed method significantly outperforms existing models across multiple evaluation metrics, with an F1 score improvement of 2.4% on the CHIP-CTC dataset, 3.1% on the IMCS-V2-NER dataset,and 4.2% on the KUAKE-QTR dataset. Additionally,ablation studies confirmed the critical role of the knowledge injection module,as the removal of this module resulted in a significant drop in F1 score. The experimental results demonstrate that the proposed method not only effectively improves the accuracy of disease diagnosis but also enhances the interpretability of the predictions, providing more reliable support and evidence for clinical diagnosis.
Abstract:This research reports VascularPilot3D, the first 3D fully autonomous endovascular robot navigation system. As an exploration toward autonomous guidewire navigation, VascularPilot3D is developed as a complete navigation system based on intra-operative imaging systems (fluoroscopic X-ray in this study) and typical endovascular robots. VascularPilot3D adopts previously researched fast 3D-2D vessel registration algorithms and guidewire segmentation methods as its perception modules. We additionally propose three modules: a topology-constrained 2D-3D instrument end-point lifting method, a tree-based fast path planning algorithm, and a prior-free endovascular navigation strategy. VascularPilot3D is compatible with most mainstream endovascular robots. Ex-vivo experiments validate that VascularPilot3D achieves 100% success rate among 25 trials. It reduces the human surgeon's overall control loops by 18.38%. VascularPilot3D is promising for general clinical autonomous endovascular navigations.