Abstract:Masked prediction has emerged as a promising pretraining paradigm in offline reinforcement learning (RL) due to its versatile masking schemes, enabling flexible inference across various downstream tasks with a unified model. Despite the versatility of masked prediction, it remains unclear how to balance the learning of skills at different levels of complexity. To address this, we propose CurrMask, a curriculum masking pretraining paradigm for sequential decision making. Motivated by how humans learn by organizing knowledge in a curriculum, CurrMask adjusts its masking scheme during pretraining for learning versatile skills. Through extensive experiments, we show that CurrMask exhibits superior zero-shot performance on skill prompting tasks, goal-conditioned planning tasks, and competitive finetuning performance on offline RL tasks. Additionally, our analysis of training dynamics reveals that CurrMask gradually acquires skills of varying complexity by dynamically adjusting its masking scheme.
Abstract:Replaying past experiences has proven to be a highly effective approach for averting catastrophic forgetting in supervised continual learning. However, some crucial factors are still largely ignored, making it vulnerable to serious failure, when used as a solution to forgetting in continual reinforcement learning, even in the context of perfect memory where all data of previous tasks are accessible in the current task. On the one hand, since most reinforcement learning algorithms are not invariant to the reward scale, the previously well-learned tasks (with high rewards) may appear to be more salient to the current learning process than the current task (with small initial rewards). This causes the agent to concentrate on those salient tasks at the expense of generality on the current task. On the other hand, offline learning on replayed tasks while learning a new task may induce a distributional shift between the dataset and the learned policy on old tasks, resulting in forgetting. In this paper, we introduce RECALL, a replay-enhanced method that greatly improves the plasticity of existing replay-based methods on new tasks while effectively avoiding the recurrence of catastrophic forgetting in continual reinforcement learning. RECALL leverages adaptive normalization on approximate targets and policy distillation on old tasks to enhance generality and stability, respectively. Extensive experiments on the Continual World benchmark show that RECALL performs significantly better than purely perfect memory replay, and achieves comparable or better overall performance against state-of-the-art continual learning methods.
Abstract:Recent research in offline reinforcement learning (RL) has demonstrated that return-conditioned supervised learning is a powerful paradigm for decision-making problems. While promising, return conditioning is limited to training data labeled with rewards and therefore faces challenges in learning from unsupervised data. In this work, we aim to utilize generalized future conditioning to enable efficient unsupervised pretraining from reward-free and sub-optimal offline data. We propose Pretrained Decision Transformer (PDT), a conceptually simple approach for unsupervised RL pretraining. PDT leverages future trajectory information as a privileged context to predict actions during training. The ability to make decisions based on both present and future factors enhances PDT's capability for generalization. Besides, this feature can be easily incorporated into a return-conditioned framework for online finetuning, by assigning return values to possible futures and sampling future embeddings based on their respective values. Empirically, PDT outperforms or performs on par with its supervised pretraining counterpart, especially when dealing with sub-optimal data. Further analysis reveals that PDT can extract diverse behaviors from offline data and controllably sample high-return behaviors by online finetuning. Code is available at here.
Abstract:Recent success in Deep Reinforcement Learning (DRL) methods has shown that policy optimization with respect to an off-policy distribution via importance sampling is effective for sample reuse. In this paper, we show that the use of importance sampling could introduce high variance in the objective estimate. Specifically, we show in a principled way that the variance of importance sampling estimate grows quadratically with importance ratios and the large ratios could consequently jeopardize the effectiveness of surrogate objective optimization. We then propose a technique called sample dropout to bound the estimation variance by dropping out samples when their ratio deviation is too high. We instantiate this sample dropout technique on representative policy optimization algorithms, including TRPO, PPO, and ESPO, and demonstrate that it consistently boosts the performance of those DRL algorithms on both continuous and discrete action controls, including MuJoCo, DMControl and Atari video games. Our code is open-sourced at \url{https://github.com/LinZichuan/sdpo.git}.
Abstract:Transformer has been considered the dominating neural architecture in NLP and CV, mostly under a supervised setting. Recently, a similar surge of using Transformers has appeared in the domain of reinforcement learning (RL), but it is faced with unique design choices and challenges brought by the nature of RL. However, the evolution of Transformers in RL has not yet been well unraveled. Hence, in this paper, we seek to systematically review motivations and progress on using Transformers in RL, provide a taxonomy on existing works, discuss each sub-field, and summarize future prospects.
Abstract:The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.
Abstract:We study the adaption of soft actor-critic (SAC) from continuous action space to discrete action space. We revisit vanilla SAC and provide an in-depth understanding of its Q value underestimation and performance instability issues when applied to discrete settings. We thereby propose entropy-penalty and double average Q-learning with Q-clip to address these issues. Extensive experiments on typical benchmarks with discrete action space, including Atari games and a large-scale MOBA game, show the efficacy of our proposed method. Our code is at:https://github.com/coldsummerday/Revisiting-Discrete-SAC.
Abstract:Reinforcement learning competitions advance the field by providing appropriate scope and support to develop solutions toward a specific problem. To promote the development of more broadly applicable methods, organizers need to enforce the use of general techniques, the use of sample-efficient methods, and the reproducibility of the results. While beneficial for the research community, these restrictions come at a cost -- increased difficulty. If the barrier for entry is too high, many potential participants are demoralized. With this in mind, we hosted the third edition of the MineRL ObtainDiamond competition, MineRL Diamond 2021, with a separate track in which we permitted any solution to promote the participation of newcomers. With this track and more extensive tutorials and support, we saw an increased number of submissions. The participants of this easier track were able to obtain a diamond, and the participants of the harder track progressed the generalizable solutions in the same task.
Abstract:Learning rational behaviors in open-world games like Minecraft remains to be challenging for Reinforcement Learning (RL) research due to the compound challenge of partial observability, high-dimensional visual perception and delayed reward. To address this, we propose JueWu-MC, a sample-efficient hierarchical RL approach equipped with representation learning and imitation learning to deal with perception and exploration. Specifically, our approach includes two levels of hierarchy, where the high-level controller learns a policy to control over options and the low-level workers learn to solve each sub-task. To boost the learning of sub-tasks, we propose a combination of techniques including 1) action-aware representation learning which captures underlying relations between action and representation, 2) discriminator-based self-imitation learning for efficient exploration, and 3) ensemble behavior cloning with consistency filtering for policy robustness. Extensive experiments show that JueWu-MC significantly improves sample efficiency and outperforms a set of baselines by a large margin. Notably, we won the championship of the NeurIPS MineRL 2021 research competition and achieved the highest performance score ever.
Abstract:Recent work (Takanobu et al., 2020) proposed the system-wise evaluation on dialog systems and found that improvement on individual components (e.g., NLU, policy) in prior work may not necessarily bring benefit to pipeline systems in system-wise evaluation. To improve the system-wise performance, in this paper, we propose new joint system-wise optimization techniques for the pipeline dialog system. First, we propose a new data augmentation approach which automates the labeling process for NLU training. Second, we propose a novel stochastic policy parameterization with Poisson distribution that enables better exploration and offers a principled way to compute policy gradient. Third, we propose a reward bonus to help policy explore successful dialogs. Our approaches outperform the competitive pipeline systems from Takanobu et al. (2020) by big margins of 12% success rate in automatic system-wise evaluation and of 16% success rate in human evaluation on the standard multi-domain benchmark dataset MultiWOZ 2.1, and also outperform the recent state-of-the-art end-to-end trained model from DSTC9.