Abstract:This paper investigates the research task of reconstructing the 3D clothed human body from a monocular image. Due to the inherent ambiguity of single-view input, existing approaches leverage pre-trained SMPL(-X) estimation models or generative models to provide auxiliary information for human reconstruction. However, these methods capture only the general human body geometry and overlook specific geometric details, leading to inaccurate skeleton reconstruction, incorrect joint positions, and unclear cloth wrinkles. In response to these issues, we propose a multi-level geometry learning framework. Technically, we design three key components: skeleton-level enhancement, joint-level augmentation, and wrinkle-level refinement modules. Specifically, we effectively integrate the projected 3D Fourier features into a Gaussian reconstruction model, introduce perturbations to improve joint depth estimation during training, and refine the human coarse wrinkles by resembling the de-noising process of diffusion model. Extensive quantitative and qualitative experiments on two out-of-distribution test sets show the superior performance of our approach compared to state-of-the-art (SOTA) methods.
Abstract:In the animation industry, 3D modelers typically rely on front and back non-overlapped concept designs to guide the 3D modeling of anime characters. However, there is currently a lack of automated approaches for generating anime characters directly from these 2D designs. In light of this, we explore a novel task of reconstructing anime characters from non-overlapped views. This presents two main challenges: existing multi-view approaches cannot be directly applied due to the absence of overlapping regions, and there is a scarcity of full-body anime character data and standard benchmarks. To bridge the gap, we present Non-Overlapped Views for 3D \textbf{A}nime Character Reconstruction (NOVA-3D), a new framework that implements a method for view-aware feature fusion to learn 3D-consistent features effectively and synthesizes full-body anime characters from non-overlapped front and back views directly. To facilitate this line of research, we collected the NOVA-Human dataset, which comprises multi-view images and accurate camera parameters for 3D anime characters. Extensive experiments demonstrate that the proposed method outperforms baseline approaches, achieving superior reconstruction of anime characters with exceptional detail fidelity. In addition, to further verify the effectiveness of our method, we applied it to the animation head reconstruction task and improved the state-of-the-art baseline to 94.453 in SSIM, 7.726 in LPIPS, and 19.575 in PSNR on average. Codes and datasets are available at https://wanghongsheng01.github.io/NOVA-3D/.