Abstract:Orthogonal time frequency space (OTFS) modulation has been viewed as a promising technique for integrated sensing and communication (ISAC) systems and aerial-terrestrial networks, due to its delay-Doppler domain transmission property and strong Doppler-resistance capability. However, it also suffers from high processing complexity at the receiver. In this work, we propose a novel pre-equalization based ISAC-OTFS transmission framework, where the terrestrial base station (BS) executes pre-equalization based on its estimated channel state information (CSI). In particular, the mean square error of OTFS symbol demodulation and Cramer-Rao lower bound of sensing parameter estimation are derived, and their weighted sum is utilized as the metric for optimizing the pre-equalization matrix. To address the formulated problem while taking the time-varying CSI into consideration, a deep learning enabled channel prediction-based pre-equalization framework is proposed, where a parameter-level channel prediction module is utilized to decouple OTFS channel parameters, and a low-dimensional prediction network is leveraged to correct outdated CSI. A CSI processing module is then used to initialize the input of the pre-equalization module. Finally, a residual-structured deep neural network is cascaded to execute pre-equalization. Simulation results show that under the proposed framework, the demodulation complexity at the receiver as well as the pilot overhead for channel estimation, are significantly reduced, while the symbol detection performance approaches those of conventional minimum mean square error equalization and perfect CSI.
Abstract:This paper presents a novel two-stage method for constructing channel knowledge maps (CKMs) specifically for A2G (Aerial-to-Ground) channels in the presence of non-cooperative interfering nodes (INs). We first estimate the interfering signal strength (ISS) at sampling locations based on total received signal strength measurements and the desired communication signal strength (DSS) map constructed with environmental topology. Next, an ISS map construction network (IMNet) is proposed, where a negative value correction module is included to enable precise reconstruction. Subsequently, we further execute signal-to-interference-plus-noise ratio map construction and IN localization. Simulation results demonstrate lower construction error of the proposed IMNet compared to baselines in the presence of interference.
Abstract:Existing integrated sensing and communication (ISAC) beamforming design were mostly designed under perfect instantaneous channel state information (CSI), limiting their use in practical dynamic environments. In this paper, we study the beamforming design for multiple-input multiple-output (MIMO) ISAC systems based on statistical CSI, with the weighted mutual information (MI) comprising sensing and communication perspectives adopted as the performance metric. In particular, the operator-valued free probability theory is utilized to derive the closed-form expression for the weighted MI under statistical CSI. Subsequently, an efficient projected gradient ascent (PGA) algorithm is proposed to optimize the transmit beamforming matrix with the aim of maximizing the weighted MI.Numerical results validate that the derived closed-form expression matches well with the Monte Carlo simulation results and the proposed optimization algorithm is able to improve the weighted MI significantly. We also illustrate the trade-off between sensing and communication MI.
Abstract:Among the key enabling 6G techniques, multiple-input multiple-output (MIMO) and non-orthogonal multiple-access (NOMA) play an important role in enhancing the spectral efficiency of the wireless communication systems. To further extend the coverage and the capacity, the simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) has recently emerged out as a cost-effective technology. To exploit the benefit of STAR-RIS in the MIMO-NOMA systems, in this paper, we investigate the analysis and optimization of the downlink dual-user MIMO-NOMA systems assisted by multiple STAR-RISs under the generalized singular value decomposition (GSVD) precoding scheme, in which the channel is assumed to be Rician faded with the Weichselberger's correlation structure. To analyze the asymptotic information rate of the users, we apply the operator-valued free probability theory to obtain the Cauchy transform of the generalized singular values (GSVs) of the MIMO-NOMA channel matrices, which can be used to obtain the information rate by Riemann integral. Then, considering the special case when the channels between the BS and the STAR-RISs are deterministic, we obtain the closed-form expression for the asymptotic information rates of the users. Furthermore, a projected gradient ascent method (PGAM) is proposed with the derived closed-form expression to design the STAR-RISs thereby maximizing the sum rate based on the statistical channel state information. The numerical results show the accuracy of the asymptotic expression compared to the Monte Carlo simulations and the superiority of the proposed PGAM algorithm.
Abstract:This paper delves into an integrated sensing and communication (ISAC) system bolstered by a simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS). Within this system, a base station (BS) is equipped with communication and radar capabilities, enabling it to communicate with ground terminals (GTs) and concurrently probe for echo signals from a target of interest. Moreover, to manage interference and improve communication quality, the rate splitting multiple access (RSMA) scheme is incorporated into the system. The signal-to-interference-plus-noise ratio (SINR) of the received sensing echo signals is a measure of sensing performance. We formulate a joint optimization problem of common rates, transmit beamforming at the BS, and passive beamforming vectors of the STAR-RIS. The objective is to maximize sensing SINR while guaranteeing the communication rate requirements for each GT. We present an iterative algorithm to address the non-convex problem by invoking Dinkelbach's transform, semidefinite relaxation (SDR), majorization-minimization, and sequential rank-one constraint relaxation (SROCR) theories. Simulation results manifest that the performance of the studied ISAC network enhanced by the STAR-RIS and RSMA surpasses other benchmarks considerably. The results evidently indicate the superior performance improvement of the ISAC system with the proposed RSMA-based transmission strategy design and the dynamic optimization of both transmission and reflection beamforming at STAR-RIS.
Abstract:When applying integrated sensing and communications (ISAC) in future mobile networks, many sensing tasks have low latency requirements, preferably being implemented at terminals. However, terminals often have limited computing capabilities and energy supply. In this paper, we investigate the effectiveness of leveraging the advanced computing capabilities of mobile edge computing (MEC) servers and the cloud server to address the sensing tasks of ISAC terminals. Specifically, we propose a novel three-tier integrated sensing, communication, and computing (ISCC) framework composed of one cloud server, multiple MEC servers, and multiple terminals, where the terminals can optionally offload sensing data to the MEC server or the cloud server. The offload message is sent via the ISAC waveform, whose echo is used for sensing. We jointly optimize the computation offloading and beamforming strategies to minimize the average execution latency while satisfying sensing requirements. In particular, we propose a low-complexity distributed algorithm to solve the problem. Firstly, we use the alternating direction method of multipliers (ADMM) and derive the closed-form solution for offloading decision variables. Subsequently, we convert the beamforming optimization sub-problem into a weighted minimum mean-square error (WMMSE) problem and propose a fractional programming based algorithm. Numerical results demonstrate that the proposed ISCC framework and distributed algorithm significantly reduce the execution latency and the energy consumption of sensing tasks at a lower computational complexity compared to existing schemes.
Abstract:In this paper, we propose a novel symbiotic sensing and communication (SSAC) framework, comprising a base station (BS) and a passive sensing node. In particular, the BS transmits communication waveform to serve vehicle users (VUEs), while the sensing node is employed to execute sensing tasks based on the echoes in a bistatic manner, thereby avoiding the issue of self-interference. Besides the weak target of interest, the sensing node tracks VUEs and shares sensing results with BS to facilitate sensing-assisted beamforming. By considering both fully digital arrays and hybrid analog-digital (HAD) arrays, we investigate the beamforming design in the SSAC system. We first derive the Cramer-Rao lower bound (CRLB) of the two-dimensional angles of arrival estimation as the sensing metric. Next, we formulate an achievable sum rate maximization problem under the CRLB constraint, where the channel state information is reconstructed based on the sensing results. Then, we propose two penalty dual decomposition (PDD)-based alternating algorithms for fully digital and HAD arrays, respectively. Simulation results demonstrate that the proposed algorithms can achieve an outstanding data rate with effective localization capability for both VUEs and the weak target. In particular, the HAD beamforming design exhibits remarkable performance gain compared to conventional schemes, especially with fewer radio frequency chains.
Abstract:Integrated sensing and communication (ISAC) is regarded as a promising technique for 6G communication network. In this letter, we investigate the Pareto bound of the ISAC system in terms of a unified Kullback-Leibler (KL) divergence performance metric. We firstly present the relationship between KL divergence and explicit ISAC performance metric, i.e., demodulation error and probability of detection. Thereafter, we investigate the impact of constellation and beamforming design on the Pareto bound via deep learning and semi-definite relaxation (SDR) techniques. Simulation results show the trade-off between sensing and communication performance in terms of bit error rate (BER) and probability of detection under different parameter set-ups.
Abstract:This paper investigates simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) aided physical layer security (PLS) in multiple-input multiple-output (MIMO) systems, where the base station (BS) transmits secrecy information with the aid of STAR-RIS against multiple eavesdroppers equipped with multiple antennas. We aim to maximize the secrecy rate by jointly optimizing the active beamforming at the BS and passive beamforming at the STAR-RIS, subject to the hardware constraint for STAR-RIS. To handle the coupling variables, a minimum mean-square error (MMSE) based alternating optimization (AO) algorithm is applied. In particular, the amplitudes and phases of STAR-RIS are divided into two blocks to simplify the algorithm design. Besides, by applying the Majorization-Minimization (MM) method, we derive a closed-form expression of the STAR-RIS's phase shifts. Numerical results show that the proposed scheme significantly outperforms various benchmark schemes, especially as the number of STAR-RIS elements increases.
Abstract:This paper investigates the spectrum sharing between a multiple-input single-output (MISO) secure communication system and a multiple-input multiple-output (MIMO) radar system in the presence of one suspicious eavesdropper. We jointly design the radar waveform and communication beamforming vector at the two systems, such that the interference between the base station (BS) and radar is reduced, and the detrimental radar interference to the communication system is enhanced to jam the eavesdropper, thereby increasing secure information transmission performance. In particular, by considering the imperfect channel state information (CSI) for the user and eavesdropper, we maximize the worst-case secrecy rate at the user, while ensuring the detection performance of radar system. To tackle this challenging problem, we propose a two-layer robust cooperative algorithm based on the S-lemma and semidefinite relaxation techniques. Simulation results demonstrate that the proposed algorithm achieves significant secrecy rate gains over the non-robust scheme. Furthermore, we illustrate the trade-off between secrecy rate and detection probability.