Abstract:The task of medical image recognition is notably complicated by the presence of varied and multiple pathological indications, presenting a unique challenge in multi-label classification with unseen labels. This complexity underlines the need for computer-aided diagnosis methods employing multi-label zero-shot learning. Recent advancements in pre-trained vision-language models (VLMs) have showcased notable zero-shot classification abilities on medical images. However, these methods have limitations on leveraging extensive pre-trained knowledge from broader image datasets, and often depend on manual prompt construction by expert radiologists. By automating the process of prompt tuning, prompt learning techniques have emerged as an efficient way to adapt VLMs to downstream tasks. Yet, existing CoOp-based strategies fall short in performing class-specific prompts on unseen categories, limiting generalizability in fine-grained scenarios. To overcome these constraints, we introduce a novel prompt generation approach inspirited by text generation in natural language processing (NLP). Our method, named Pseudo-Prompt Generating (PsPG), capitalizes on the priori knowledge of multi-modal features. Featuring a RNN-based decoder, PsPG autoregressively generates class-tailored embedding vectors, i.e., pseudo-prompts. Comparative evaluations on various multi-label chest radiograph datasets affirm the superiority of our approach against leading medical vision-language and multi-label prompt learning methods. The source code is available at https://github.com/fallingnight/PsPG
Abstract:Prosthetic Joint Infection (PJI) is a prevalent and severe complication characterized by high diagnostic challenges. Currently, a unified diagnostic standard incorporating both computed tomography (CT) images and numerical text data for PJI remains unestablished, owing to the substantial noise in CT images and the disparity in data volume between CT images and text data. This study introduces a diagnostic method, HGT, based on deep learning and multimodal techniques. It effectively merges features from CT scan images and patients' numerical text data via a Unidirectional Selective Attention (USA) mechanism and a graph convolutional network (GCN)-based feature fusion network. We evaluated the proposed method on a custom-built multimodal PJI dataset, assessing its performance through ablation experiments and interpretability evaluations. Our method achieved an accuracy (ACC) of 91.4\% and an area under the curve (AUC) of 95.9\%, outperforming recent multimodal approaches by 2.9\% in ACC and 2.2\% in AUC, with a parameter count of only 68M. Notably, the interpretability results highlighted our model's strong focus and localization capabilities at lesion sites. This proposed method could provide clinicians with additional diagnostic tools to enhance accuracy and efficiency in clinical practice.
Abstract:Postoperative infection diagnosis is a common and serious complication that generally poses a high diagnostic challenge. This study focuses on PJI, a type of postoperative infection. X-ray examination is an imaging examination for suspected PJI patients that can evaluate joint prostheses and adjacent tissues, and detect the cause of pain. Laboratory examination data has high sensitivity and specificity and has significant potential in PJI diagnosis. In this study, we proposed a self-supervised masked autoencoder pre-training strategy and a multimodal fusion diagnostic network MED-NVC, which effectively implements the interaction between two modal features through the feature fusion network of CrossAttention. We tested our proposed method on our collected PJI dataset and evaluated its performance and feasibility through comparison and ablation experiments. The results showed that our method achieved an ACC of 94.71% and an AUC of 98.22%, which is better than the latest method and also reduces the number of parameters. Our proposed method has the potential to provide clinicians with a powerful tool for enhancing accuracy and efficiency.